cell.c 157 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
64
#include "stars.h"
65
#include "timers.h"
66
#include "tools.h"
67
#include "tracers.h"
68

69
70
71
/* Global variables. */
int cell_next_tag = 0;

72
73
74
75
76
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
77
int cell_getsize(struct cell *c) {
78

Pedro Gonnet's avatar
Pedro Gonnet committed
79
80
  /* Number of cells in this subtree. */
  int count = 1;
81

82
83
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
84
    for (int k = 0; k < 8; k++)
85
86
87
88
89
90
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

91
/**
92
 * @brief Link the cells recursively to the given #part array.
93
94
95
96
97
98
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
99
100
int cell_link_parts(struct cell *c, struct part *parts) {

101
#ifdef SWIFT_DEBUG_CHECKS
102
103
104
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

105
106
107
108
  if(c->hydro.parts != NULL)
    error("Linking parts into a cell that was already linked");
#endif

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
125
 * @brief Link the cells recursively to the given #gpart array.
126
127
 *
 * @param c The #cell.
128
 * @param gparts The #gpart array.
129
130
131
 *
 * @return The number of particles linked.
 */
132
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
133
134
135
136
137

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

138
139
  if(c->grav.parts != NULL)
    error("Linking gparts into a cell that was already linked");
140
#endif
141

142
  c->grav.parts = gparts;
143
144
145
146
147
148
149
150
151
152
153

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
154
  return c->grav.count;
155
156
}

157
158
159
160
161
162
163
164
165
166
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

167
168
169
170
171
172
173
174
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if(c->stars.parts != NULL)
    error("Linking sparts into a cell that was already linked");
#endif

175
  c->stars.parts = sparts;
176
177
178
179
180
181
182
183
184
185
186

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
187
  return c->stars.count;
188
189
}

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
int cell_link_foreign_parts(struct cell *c, struct part *parts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
  if (c->hydro.density != NULL) {

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
    return count;
  } else {
    return 0;
  }
}

int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
  if (c->grav.grav != NULL) {

    /* Recursively attach the parts */
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
    return count;
  } else {
    return 0;
  }
}

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
int cell_count_parts_for_tasks(const struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
  if (c->hydro.density != NULL) {
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
    return count;
  } else {
    return 0;
  }
}

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
int cell_count_gparts_for_tasks(const struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
  if (c->grav.grav != NULL) {
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
    return count;
  } else {
    return 0;
  }
}


307
308
309
310
311
312
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
313
314
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
315
316
317
 *
 * @return The number of packed cells.
 */
318
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
319
              const int with_gravity) {
320

321
322
#ifdef WITH_MPI

323
  /* Start by packing the data of the current cell. */
324
325
326
327
328
  pc->hydro.h_max = c->hydro.h_max;
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
329
  pc->stars.ti_end_min = c->stars.ti_end_min;
330
331
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
332
333
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
  pc->hydro.count = c->hydro.count;
334
335
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
336
  pc->maxdepth = c->maxdepth;
337

338
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
339
  if (with_gravity) {
340
    const struct gravity_tensors *mp = c->grav.multipole;
341

342
343
344
345
346
347
348
349
350
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
351
352
  }

353
354
355
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
356
357

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
358
359
  int count = 1;
  for (int k = 0; k < 8; k++)
360
361
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
362
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
363
    } else {
364
      pc->progeny[k] = -1;
365
    }
366
367

  /* Return the number of packed cells used. */
368
  c->mpi.pcell_size = count;
369
  return count;
370
371
372
373
374

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
375
376
}

377
378
379
380
381
382
383
384
385
386
387
388
389
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
390
  tags[0] = c->mpi.tag;
391
392
393
394
395
396
397
398

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
399
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
400
401
402
403
404
405
406
407
408
409
410
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

411
412
413
414
415
416
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
417
418
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
419
420
421
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
422
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
423
                struct space *restrict s, const int with_gravity) {
424
425
426
427

#ifdef WITH_MPI

  /* Unpack the current pcell. */
428
429
430
431
432
  c->hydro.h_max = pc->hydro.h_max;
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
433
  c->stars.ti_end_min = pc->stars.ti_end_min;
434
435
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
436
437
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
  c->hydro.count = pc->hydro.count;
438
439
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
440
441
  c->maxdepth = pc->maxdepth;

442
443
444
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
445

446
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
447
  if (with_gravity) {
448

449
    struct gravity_tensors *mp = c->grav.multipole;
450

451
452
453
454
455
456
457
458
459
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
460
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
461

462
463
464
465
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
466
  c->split = 0;
467
468
469
470
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
471
      temp->hydro.count = 0;
472
473
      temp->grav.count = 0;
      temp->stars.count = 0;
474
475
476
477
478
479
480
481
482
483
484
485
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
486
      temp->hydro.dx_max_part = 0.f;
487
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
488
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
489
      temp->stars.dx_max_sort = 0.f;
490
491
492
493
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
494
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
495
496
497
    }

  /* Return the total number of unpacked cells. */
498
  c->mpi.pcell_size = count;
499
500
501
502
503
504
505
506
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

507
508
509
510
511
512
513
514
515
516
517
518
519
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
520
  c->mpi.tag = tags[0];
521
522
523
524
525
526
527
528
529
530
531

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
532
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
533
534
535
536
537
538
539
540
541
542
543
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

544
545
546
547
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
548
 * @param pcells (output) The end-of-timestep information we pack into
549
550
551
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
552
553
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
554

555
556
#ifdef WITH_MPI

557
  /* Pack this cell's data. */
558
559
560
561
  pcells[0].hydro.ti_end_min = c->hydro.ti_end_min;
  pcells[0].hydro.ti_end_max = c->hydro.ti_end_max;
  pcells[0].grav.ti_end_min = c->grav.ti_end_min;
  pcells[0].grav.ti_end_max = c->grav.ti_end_max;
562
  pcells[0].stars.ti_end_min = c->stars.ti_end_min;
563
  pcells[0].hydro.dx_max_part = c->hydro.dx_max_part;
Loic Hausammann's avatar
Loic Hausammann committed
564
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
565

566
567
568
569
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
570
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
571
572
573
574
    }

  /* Return the number of packed values. */
  return count;
575
576
577
578
579

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
580
581
}

582
583
584
585
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
586
 * @param pcells The end-of-timestep information to unpack
587
588
589
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
590
591
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
592

593
594
#ifdef WITH_MPI

595
  /* Unpack this cell's data. */
596
597
598
599
  c->hydro.ti_end_min = pcells[0].hydro.ti_end_min;
  c->hydro.ti_end_max = pcells[0].hydro.ti_end_max;
  c->grav.ti_end_min = pcells[0].grav.ti_end_min;
  c->grav.ti_end_max = pcells[0].grav.ti_end_max;
600
  c->stars.ti_end_min = pcells[0].stars.ti_end_min;
601
  c->hydro.dx_max_part = pcells[0].hydro.dx_max_part;
Loic Hausammann's avatar
Loic Hausammann committed
602
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
603

604
605
606
607
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
608
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
609
610
611
    }

  /* Return the number of packed values. */
612
  return count;
613
614
615
616
617

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
618
}
619

620
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
621
622
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
623
624
625
626
627
628
629
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
630
                         struct gravity_tensors *restrict pcells) {
631
632
633
634

#ifdef WITH_MPI

  /* Pack this cell's data. */
635
  pcells[0] = *c->grav.multipole;
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
662
                           struct gravity_tensors *restrict pcells) {
663
664
665
666

#ifdef WITH_MPI

  /* Unpack this cell's data. */
667
  *c->grav.multipole = pcells[0];
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

685
/**
686
 * @brief Lock a cell for access to its array of #part and hold its parents.
687
688
 *
 * @param c The #cell.
689
 * @return 0 on success, 1 on failure
690
 */
691
692
693
694
695
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
696
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
697
698
699
700
701
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
702
  if (c->hydro.hold) {
703
704

    /* Unlock this cell. */
705
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
706
707
708
709
710
711
712

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
713
  struct cell *finger;
714
715
716
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
717
    if (lock_trylock(&finger->hydro.lock) != 0) break;
718
719

    /* Increment the hold. */
720
    atomic_inc(&finger->hydro.hold);
721
722

    /* Unlock the cell. */
723
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
724
725
726
727
728
729
730
731
732
733
734
735
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
736
737
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
738
      atomic_dec(&finger2->hydro.hold);
739
740

    /* Unlock this cell. */
741
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
742
743
744
745
746
747
748

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

749
750
751
752
753
754
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
755
756
757
758
759
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
760
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
761
762
763
764
765
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
766
  if (c->grav.phold) {
767
768

    /* Unlock this cell. */
769
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
770
771
772
773
774
775
776

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
777
  struct cell *finger;
778
779
780
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
781
    if (lock_trylock(&finger->grav.plock) != 0) break;
782
783

    /* Increment the hold. */
784
    atomic_inc(&finger->grav.phold);
785
786

    /* Unlock the cell. */
787
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
788
789
790
791
792
793
794
795
796
797
798
799
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
800
801
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
802
      atomic_dec(&finger2->grav.phold);
803
804

    /* Unlock this cell. */
805
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
806
807
808
809
810
811

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
812

813
814
815
816
817
818
819
820
821
822
823
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
824
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
825
826
827
828
829
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
830
  if (c->grav.mhold) {
831
832

    /* Unlock this cell. */
833
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
834
835
836
837
838
839
840
841
842
843
844

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
845
    if (lock_trylock(&finger->grav.mlock) != 0) break;
846
847

    /* Increment the hold. */
848
    atomic_inc(&finger->grav.mhold);
849
850

    /* Unlock the cell. */
851
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
852
853
854
855
856
857
858
859
860
861
862
863
864
865
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
866
      atomic_dec(&finger2->grav.mhold);
867
868

    /* Unlock this cell. */
869
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
870
871
872
873
874
875
876

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

877
878
879
880
881
882
883
884
885
886
887
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
888
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
889
890
891
892
893
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
894
  if (c->stars.hold) {
895
896

    /* Unlock this cell. */
897
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
898
899
900
901
902
903
904
905
906
907
908

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
909
    if (lock_trylock(&finger->stars.lock) != 0) break;
910
911

    /* Increment the hold. */
912
    atomic_inc(&finger->stars.hold);
913
914

    /* Unlock the cell. */
915
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
916
917
918
919
920
921
922
923
924
925
926
927
928
929
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
930
      atomic_dec(&finger2->stars.hold);
931
932

    /* Unlock this cell. */
933
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
934
935
936
937
938
939
940

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

941
/**
942
 * @brief Unlock a cell's parents for access to #part array.
943
944
945
 *
 * @param c The #cell.
 */
946
947
948
949
950
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
951
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
952
953

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
954
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
955
    atomic_dec(&finger->hydro.hold);
956
957
958
959

  TIMER_TOC(timer_locktree);
}

960
961
962
963
964
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
965
966
967
968
969
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
970
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
971
972

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
973
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
974
    atomic_dec(&finger->grav.phold);
975
976
977
978

  TIMER_TOC(timer_locktree);
}

979
980
981
982
983
984
985
986
987
988
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
989
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
990
991
992

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
993
    atomic_dec(&finger->grav.mhold);
994
995
996
997

  TIMER_TOC(timer_locktree);
}

998
999
1000
1001
1002
1003
1004
1005
1006
1007
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1008
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1009
1010
1011

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1012
    atomic_dec(&finger->stars.hold);
1013
1014
1015
1016

  TIMER_TOC(timer_locktree);
}

1017
1018
1019
1020
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
1021
 * @param parts_offset Offset of the cell parts array relative to the
1022
 *        space's parts array, i.e. c->hydro.parts - s->parts.
1023
 * @param sparts_offset Offset of the cell sparts array relative to the
1024
1025
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
1026
 * entries, used for sorting indices.
1027
1028
1029
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
 * @param gbuff A buffer with at least max(c->hydro.count, c->grav.count)
1030
 * entries, used for sorting indices for the gparts.
1031
 */
1032
1033
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
1034
                struct cell_buff *gbuff) {
1035

1036
1037
  const int count = c->hydro.count, gcount = c->grav.count,
            scount = c->stars.count;
1038
1039
  struct part *parts = c->hydro.parts;
  struct xpart *xparts = c->hydro.xparts;
1040
1041
  struct gpart *gparts = c->grav.parts;
  struct spart *sparts = c->stars.parts;
1042
1043
1044
1045
1046
1047
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

1048
1049
1050
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
1051
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
1052
        buff[k].x[2] != parts[k].x[2])
1053
1054
      error("Inconsistent buff contents.");
  }
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
1065
#endif /* SWIFT_DEBUG_CHECKS */
1066
1067
1068

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
1069
1070
    const int bid = (buff[k].x[0] >= pivot[0]) * 4 +
                    (buff[k].x[1] >= pivot[1]) * 2 + (buff[k].x[2] >= pivot[2]);
1071
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
1072
    buff[k].ind = bid;
1073
  }
1074

1075
1076
1077
1078
1079
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
1080
1081
  }

1082
1083
1084
1085
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1086
      int bid = buff[k].ind;
1087
1088
1089
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
1090
        struct cell_buff temp_buff = buff[k];
1091
1092
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
1093
          while (buff[j].ind == bid) {
1094
1095
1096
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
1097
1098
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
1099
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
1100
1101
          if (parts[j].gpart)
            parts[j].gpart->id_or_neg_offset = -(j + parts_offset);
1102
          bid = temp_buff.ind;
1103
1104
1105
        }
        parts[k] = part;
        xparts[k] = xpart;
1106
        buff[k] = temp_buff;
1107
1108
        if (parts[k].gpart)
          parts[k].gpart->id_or_neg_offset = -(k + parts_offset);
1109
      }
1110
      bucket_count[bid]++;
1111
1112
1113
1114
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1115
  for (int k = 0; k < 8; k++) {
1116
    c->progeny[k]->hydro.count = bucket_count[k];
1117
    c->progeny[k]->hydro.count_total = c->progeny[k]->hydro.count;
1118
1119
    c->progeny[k]->hydro.parts = &c->hydro.parts[bucket_offset[k]];
    c->progeny[k]->hydro.xparts = &c->hydro.xparts[bucket_offset[k]];
1120
1121
  }

1122
#ifdef SWIFT_DEBUG_CHECKS
1123
1124
1125
1126
1127
1128
1129
1130
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

1131
  /* Verify that _all_ the parts have been assigned to a cell. */
1132
  for (int k = 1; k < 8; k++)
1133
1134
    if (&c->progeny[k - 1]->hydro.parts[c->progeny[k - 1]->hydro.count] !=
        c->progeny[k]->hydro.parts)
1135
      error("Particle sorting failed (internal consistency).");
1136
  if (c->progeny[0]->hydro.parts != c->hydro.parts)
1137
    error("Particle sorting failed (left edge).");
1138
1139
  if (&c->progeny[7]->hydro.parts[c->progeny[7]->hydro.count] !=
      &c->hydro.parts[count])
1140
    error("Particle sorting failed (right edge).");
1141
1142

  /* Verify a few sub-cells. */
1143
1144
1145
1146
  for (int k = 0; k < c->progeny[0]->hydro.count; k++)
    if (c->progeny[0]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[0]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[0]->hydro.parts[k].x[2] >= pivot[2])
1147
      error("Sorting failed (progeny=0).");
1148
1149
1150
1151
  for (int k = 0; k < c->progeny[1]->hydro.count; k++)
    if (c->progeny[1]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[1]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[1]->hydro.parts[k].x[2] < pivot[2])
1152
      error("Sorting failed (progeny=1).");
1153
1154
1155
1156
  for (int k = 0; k < c->progeny[2]->hydro.count; k++)
    if (c->progeny[2]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[2]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[2]->hydro.parts[k].x[2] >= pivot[2])
1157
      error("Sorting failed (progeny=2).");
1158
1159
1160
1161
  for (int k = 0; k < c->progeny[3]->hydro.count; k++)
    if (c->progeny[3]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[3]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[3]->hydro.parts[k].x[2] < pivot[2])
1162
      error("Sorting failed (progeny=3).");
1163
1164
1165
1166
  for (int k = 0; k < c->progeny[4]->hydro.count; k++)
    if (c->progeny[4]->hydro.parts[k].x[0] < pivot[0] ||
        c->progeny[4]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[4]->hydro.parts[k].x[2] >= pivot[2])