cell.c 11.6 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <float.h>
#include <limits.h>
#include <math.h>

32
33
34
35
36
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

37
38
39
40
41
/* Switch off timers. */
#ifdef TIMER
    #undef TIMER
#endif

42
/* Local headers. */
43
#include "const.h"
44
45
46
#include "cycle.h"
#include "lock.h"
#include "task.h"
47
#include "timers.h"
48
#include "part.h"
49
#include "space.h"
50
#include "cell.h"
51
52
#include "error.h"
#include "inline.h"
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
 
int cell_getsize ( struct cell *c ) {

    int k, count = 1;
    
    /* Sum up the progeny if split. */
    if ( c->split )
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                count += cell_getsize( c->progeny[k] );
                
    /* Return the final count. */
    return count;

    }


/** 
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 * @param parts The #part array holding the particle data.
 *
 * @return The number of cells created.
 */
 
int cell_unpack ( struct pcell *pc , struct cell *c , struct space *s , struct part *parts ) {

    int k, count = 1;
    struct cell *temp;
    
    /* Unpack the current pcell. */
    c->h_max = pc->h_max;
    c->dt_min = pc->dt_min;
    c->dt_max = pc->dt_max;
    c->count = pc->count;
    c->parts = parts;
    
    /* Fill the progeny recursively, depth-first. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( pc->progeny[k] >= 0 ) {
            temp = space_getcell( s );
            temp->count = 0;
            temp->loc[0] = c->loc[0];
            temp->loc[1] = c->loc[1];
            temp->loc[2] = c->loc[2];
            temp->h[0] = c->h[0]/2;
            temp->h[1] = c->h[1]/2;
            temp->h[2] = c->h[2]/2;
            temp->dmin = c->dmin/2;
            if ( k & 4 )
                temp->loc[0] += temp->h[0];
            if ( k & 2 )
                temp->loc[1] += temp->h[1];
            if ( k & 1 )
                temp->loc[2] += temp->h[2];
            temp->depth = c->depth + 1;
            temp->split = 0;
            temp->dx_max = 0.0;
            temp->nodeID = c->nodeID;
            temp->parent = c;
            c->progeny[k] = temp;
            c->split = 1;
            count += cell_unpack( &pc[ pc->progeny[k] ] , temp , s , parts );
            parts = &parts[ temp->count ];
            }
            
    /* Return the total number of unpacked cells. */
    return count;

    }


/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
 
int cell_pack ( struct cell *c , struct pcell *pc ) {

    int k, count = 1;
    
    /* Start by packing the data of the current cell. */
    pc->h_max = c->h_max;
    pc->dt_min = c->dt_min;
    pc->dt_max = c->dt_max;
    pc->count = c->count;
    
    /* Fill in the progeny, depth-first recursion. */
    for ( k = 0 ; k < 8 ; k++ )
        if ( c->progeny[k] != NULL ) {
            pc->progeny[k] = count;
            count += cell_pack( c->progeny[k] , &pc[count] );
            }
        else
            pc->progeny[k] = -1;
            
    /* Return the number of packed cells used. */
    return count;

    }


170
171
172
173
174
175
176
177
178
179
180
181
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */
 
int cell_locktree( struct cell *c ) {

    struct cell *finger, *finger2;
    TIMER_TIC

    /* First of all, try to lock this cell. */
182
    if ( c->hold || lock_trylock( &c->lock ) != 0 ) {
183
        TIMER_TOC(timer_locktree);
184
185
186
187
188
189
190
191
192
193
194
        return 1;
        }
        
    /* Did somebody hold this cell in the meantime? */
    if ( c->hold ) {
        
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
195
        TIMER_TOC(timer_locktree);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        return 1;
    
        }
        
    /* Climb up the tree and lock/hold/unlock. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent ) {
    
        /* Lock this cell. */
        if ( lock_trylock( &finger->lock ) != 0 )
            break;
            
        /* Increment the hold. */
        __sync_fetch_and_add( &finger->hold , 1 );
        
        /* Unlock the cell. */
        if ( lock_unlock( &finger->lock ) != 0 )
            error( "Failed to unlock cell." );
    
        }
        
    /* If we reached the top of the tree, we're done. */
    if ( finger == NULL ) {
218
        TIMER_TOC(timer_locktree);
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        return 0;
        }
        
    /* Otherwise, we hit a snag. */
    else {
    
        /* Undo the holds up to finger. */
        for ( finger2 = c->parent ; finger2 != finger ; finger2 = finger2->parent )
            __sync_fetch_and_sub( &finger2->hold , 1 );
            
        /* Unlock this cell. */
        if ( lock_unlock( &c->lock ) != 0 )
            error( "Failed to unlock cell." );
            
        /* Admit defeat. */
234
        TIMER_TOC(timer_locktree);
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        return 1;
    
        }

    }
    
    
/**
 * @brief Unock a cell's parents.
 *
 * @param c The #cell.
 */
 
void cell_unlocktree( struct cell *c ) {

    struct cell *finger;
    TIMER_TIC

    /* First of all, try to unlock this cell. */
    if ( lock_unlock( &c->lock ) != 0 )
        error( "Failed to unlock cell." );
        
    /* Climb up the tree and unhold the parents. */
    for ( finger = c->parent ; finger != NULL ; finger = finger->parent )
        __sync_fetch_and_sub( &finger->hold , 1 );
        
261
    TIMER_TOC(timer_locktree);
262
263
264
265
266
267
268
269
270
271
272
273
        
    }
    
    
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
 
void cell_split ( struct cell *c  ) {

274
    int i, j, k;
275
    struct part temp, *parts = c->parts;
276
    struct xpart xtemp, *xparts = c->xparts;
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    int left[8], right[8];
    double pivot[3];
    
    /* Init the pivot. */
    for ( k = 0 ; k < 3 ; k++ )
        pivot[k] = c->loc[k] + c->h[k]/2;
    
    /* Split along the x-axis. */
    i = 0; j = c->count - 1;
    while ( i <= j ) {
        while ( i <= c->count-1 && parts[i].x[0] <= pivot[0] )
            i += 1;
        while ( j >= 0 && parts[j].x[0] > pivot[0] )
            j -= 1;
        if ( i < j ) {
            temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
293
            xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
294
295
            }
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
296
    /* for ( k = 0 ; k <= j ; k++ )
297
298
299
300
        if ( parts[k].x[0] > pivot[0] )
            error( "cell_split: sorting failed." );
    for ( k = i ; k < c->count ; k++ )
        if ( parts[k].x[0] < pivot[0] )
Pedro Gonnet's avatar
Pedro Gonnet committed
301
            error( "cell_split: sorting failed." ); */
302
303
304
305
306
307
308
309
310
311
312
313
314
    left[1] = i; right[1] = c->count - 1;
    left[0] = 0; right[0] = j;
    
    /* Split along the y axis, twice. */
    for ( k = 1 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[1] <= pivot[1] )
                i += 1;
            while ( j >= left[k] && parts[j].x[1] > pivot[1] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
315
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
316
317
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
318
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
319
            if ( parts[kk].x[1] > pivot[1] ) {
320
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
321
322
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
323
        for ( int kk = i ; kk <= right[k] ; kk++ )
324
            if ( parts[kk].x[1] < pivot[1] )
Pedro Gonnet's avatar
Pedro Gonnet committed
325
                error( "sorting failed (right)." ); */
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }

    /* Split along the z axis, four times. */
    for ( k = 3 ; k >= 0 ; k-- ) {
        i = left[k]; j = right[k];
        while ( i <= j ) {
            while ( i <= right[k] && parts[i].x[2] <= pivot[2] )
                i += 1;
            while ( j >= left[k] && parts[j].x[2] > pivot[2] )
                j -= 1;
            if ( i < j ) {
                temp = parts[i]; parts[i] = parts[j]; parts[j] = temp;
340
                xtemp = xparts[i]; xparts[i] = xparts[j]; xparts[j] = xtemp;
341
342
                }
            }
Pedro Gonnet's avatar
Pedro Gonnet committed
343
        /* for ( int kk = left[k] ; kk <= j ; kk++ )
344
            if ( parts[kk].x[2] > pivot[2] ) {
345
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
346
347
                error( "sorting failed (left)." );
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
348
        for ( int kk = i ; kk <= right[k] ; kk++ )
349
            if ( parts[kk].x[2] < pivot[2] ) {
350
                message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
351
                error( "sorting failed (right)." );
Pedro Gonnet's avatar
Pedro Gonnet committed
352
                } */
353
354
355
356
357
358
359
360
        left[2*k+1] = i; right[2*k+1] = right[k];
        left[2*k] = left[k]; right[2*k] = j;
        }
        
    /* Store the counts and offsets. */
    for ( k = 0 ; k < 8 ; k++ ) {
        c->progeny[k]->count = right[k] - left[k] + 1;
        c->progeny[k]->parts = &c->parts[ left[k] ];
361
        c->progeny[k]->xparts = &c->xparts[ left[k] ];
362
363
        }
        
Pedro Gonnet's avatar
Pedro Gonnet committed
364
365
366
367
368
369
370
371
372
    /* Verify that _all_ the parts have been assigned to a cell. */
    /* for ( k = 1 ; k < 8 ; k++ )
        if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] != c->progeny[k]->parts )
            error( "Particle sorting failed (internal consistency)." );
    if ( c->progeny[0]->parts != c->parts )
        error( "Particle sorting failed (left edge)." );
    if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ c->count ] )
        error( "Particle sorting failed (right edge)." ); */
        
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    /* Verify a few sub-cells. */
    /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
        if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
             c->progeny[0]->parts[k].x[1] > pivot[1] ||
             c->progeny[0]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=0)." );
    for ( k = 0 ; k < c->progeny[1]->count ; k++ )
        if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
             c->progeny[1]->parts[k].x[1] > pivot[1] ||
             c->progeny[1]->parts[k].x[2] <= pivot[2] )
            error( "Sorting failed (progeny=1)." );
    for ( k = 0 ; k < c->progeny[2]->count ; k++ )
        if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
             c->progeny[2]->parts[k].x[1] <= pivot[1] ||
             c->progeny[2]->parts[k].x[2] > pivot[2] )
            error( "Sorting failed (progeny=2)." ); */

    }