runner.c 53.6 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
James Willis's avatar
James Willis committed
56
#include "runner_doiact_vec.h"
57
#include "scheduler.h"
58
#include "sort_part.h"
59
#include "sourceterms.h"
60
#include "space.h"
61
#include "stars.h"
62
63
#include "task.h"
#include "timers.h"
64
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
65

66
/* Import the density loop functions. */
67
68
69
#define FUNCTION density
#include "runner_doiact.h"

70
/* Import the gradient loop functions (if required). */
71
72
73
74
75
76
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

77
/* Import the force loop functions. */
78
79
80
81
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

82
/* Import the gravity loop functions. */
83
#include "runner_doiact_fft.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
84
#include "runner_doiact_grav.h"
85

Tom Theuns's avatar
Tom Theuns committed
86
/**
Tom Theuns's avatar
Tom Theuns committed
87
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
88
89
90
91
92
93
94
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
95
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
96
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  struct sourceterms *sourceterms = r->e->sourceterms;
98
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
99
100
101
102
103
104
105

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
106
  } else {
Tom Theuns's avatar
Tom Theuns committed
107

108
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
109

110
111
112
113
114
115
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
116
117
    }
  }
Tom Theuns's avatar
Tom Theuns committed
118
119
120
121

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
122
123
124
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
125
126
127
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
128
 */
129
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
130

Matthieu Schaller's avatar
Matthieu Schaller committed
131
132
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
133
134
135
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
136
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
137

138
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
139

140
  /* Anything to do here? */
141
  if (!cell_is_active(c, e)) return;
142

Tom Theuns's avatar
Tom Theuns committed
143
144
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
145
    for (int k = 0; k < 8; k++)
146
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
147
  } else {
148

149
150
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
151

152
153
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
154

155
      /* Is this part within the time step? */
156
      if (gpart_is_active(gp, e)) {
157
158
        external_gravity_acceleration(time, potential, constants, gp);
      }
159
    }
160
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
161

162
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
163
164
}

Stefan Arridge's avatar
Stefan Arridge committed
165
/**
166
167
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
168
169
170
171
172
173
174
175
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
176
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
177
  const int count = c->count;
178
179
180
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
181
  const struct unit_system *us = e->internal_units;
182
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
183
184
185

  TIMER_TIC;

186
187
188
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
189
190
191
192
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
193
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
194

195
196
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
197

198
199
200
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
201

202
      if (part_is_active(p, e)) {
203

204
205
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
206
207
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
208
209
210
211
212
213
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
214
215
216
217
218
219
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
220
void runner_do_sort_ascending(struct entry *sort, int N) {
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
275
        }
276
277
278
279
280
281
282
283
284
285
286
287
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
288
    }
289
290
291
  }
}

Pedro Gonnet's avatar
Pedro Gonnet committed
292
293
294
295
296
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
297
 * @param flags Cell flag.
298
299
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
300
 */
301
void runner_do_sort(struct runner *r, struct cell *c, int flags, int clock) {
302
303
304
305

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
306
  struct xpart *xparts = c->xparts;
307
  struct entry *sort;
308
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
309
  float buff[8];
310

311
312
313
314
  TIMER_TIC;

  /* Check that the particles have been moved to the current time */
  if (!cell_is_drifted(c, r->e)) error("Sorting un-drifted cell");
315

316
317
  /* Clean-up the flags, i.e. filter out what's already been sorted, but
     only if the sorts are recent. */
318
  if (c->ti_sort == r->e->ti_current) {
319
320
321
    /* Ignore dimensions that have been sorted. */
    flags &= ~c->sorted;
  } else {
322
    /* Clean old (stale) sorts. */
323
324
    c->sorted = 0;
  }
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  if (flags == 0) return;

  /* start by allocating the entry arrays. */
  if (c->sort == NULL || c->sortsize < count) {
    if (c->sort != NULL) free(c->sort);
    c->sortsize = count * 1.1;
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) *
                                          (c->sortsize + 1) * 13)) == NULL)
      error("Failed to allocate sort memory.");
  }
  sort = c->sort;

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
341
    float dx_max_sort = 0.0f;
342
    for (int k = 0; k < 8; k++) {
343
      if (c->progeny[k] != NULL) {
344
345
        if (flags & ~c->progeny[k]->sorted ||
            c->progeny[k]->dx_max_sort > c->dmin * space_maxreldx)
346
          runner_do_sort(r, c->progeny[k], flags, 0);
347
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
348
      }
349
    }
350
    c->dx_max_sort = dx_max_sort;
351
352

    /* Loop over the 13 different sort arrays. */
353
    for (int j = 0; j < 13; j++) {
354
355
356
357
358

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
359
      int off[8];
360
361
      off[0] = 0;
      for (int k = 1; k < 8; k++)
362
363
364
365
366
367
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
368
      int inds[8];
369
      for (int k = 0; k < 8; k++) {
370
371
372
373
374
375
376
377
378
379
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
380
381
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
382
          if (buff[inds[k]] < buff[inds[i]]) {
383
            int temp_i = inds[i];
384
385
386
387
388
389
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
390
      for (int ind = 0; ind < count; ind++) {
391
392
393
394
395
396
397
398
399
400

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
401
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
402
          int temp_i = inds[k - 1];
403
404
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
405
        }
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
      c->sorted |= (1 << j);

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

423
424
425
    /* Reset the sort distance if we are in a local cell */
    if (xparts != NULL) {
      for (int k = 0; k < count; k++) {
426
427
428
429
        xparts[k].x_diff_sort[0] = 0.0f;
        xparts[k].x_diff_sort[1] = 0.0f;
        xparts[k].x_diff_sort[2] = 0.0f;
      }
430
431
432
433
    }

    /* Fill the sort array. */
    for (int k = 0; k < count; k++) {
434
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
435
      for (int j = 0; j < 13; j++)
436
437
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
438
439
440
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
441
        }
442
    }
443
444

    /* Add the sentinel and sort. */
445
    for (int j = 0; j < 13; j++)
446
447
448
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
449
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
450
451
        c->sorted |= (1 << j);
      }
452
453
454

    /* Finally, clear the dx_max_sort field of this cell. */
    c->dx_max_sort = 0.f;
455
456
457
458
459
460

    /* If this was not just an update, invalidate the sorts above this one. */
    if (c->ti_sort < r->e->ti_current)
      for (struct cell *finger = c->parent; finger != NULL;
           finger = finger->parent)
        finger->sorted = 0;
461
462
  }

463
464
465
  /* Update the sort timer. */
  c->ti_sort = r->e->ti_current;

466
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
467
  /* Verify the sorting. */
468
  for (int j = 0; j < 13; j++) {
469
470
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
471
    for (int k = 1; k < count; k++) {
472
473
474
475
476
477
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
#endif
478
479
480
481

  if (clock) TIMER_TOC(timer_dosort);
}

482
/**
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
Matthieu Schaller's avatar
Matthieu Schaller committed
505

506
507
508
509
510
511
512
513
514
515
516
517
518
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

519
/**
520
521
522
523
524
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
525
 * @param timer Are we timing this ?
526
 */
527
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
528

529
#ifdef EXTRA_HYDRO_LOOP
530

531
532
  struct part *restrict parts = c->parts;
  const int count = c->count;
533
  const struct engine *e = r->e;
534

535
536
  TIMER_TIC;

537
  /* Anything to do here? */
538
  if (!cell_is_active(c, e)) return;
539

540
541
542
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
543
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
544
545
546
547
548
549
550
551
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

552
      if (part_is_active(p, e)) {
553
554
555
556
557
558

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
559

560
561
  if (timer) TIMER_TOC(timer_do_extra_ghost);

562
563
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
564
#endif
565
}
566

567
/**
568
569
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
570
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
571
 * @param r The runner thread.
572
 * @param c The cell.
573
 * @param timer Are we timing this ?
574
 */
575
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
576

Matthieu Schaller's avatar
Matthieu Schaller committed
577
578
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
579
  const struct engine *e = r->e;
580
  const struct space *s = e->s;
581
  const float hydro_h_max = e->hydro_properties->h_max;
582
  const float target_wcount = e->hydro_properties->target_neighbours;
583
  const float max_wcount =
584
      target_wcount + e->hydro_properties->delta_neighbours;
585
  const float min_wcount =
586
587
      target_wcount - e->hydro_properties->delta_neighbours;
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
588
  int redo = 0, count = 0;
589

590
591
  TIMER_TIC;

592
  /* Anything to do here? */
593
  if (!cell_is_active(c, e)) return;
594

595
596
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
597
    for (int k = 0; k < 8; k++)
598
599
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
600

601
    /* Init the list of active particles that have to be updated. */
602
    int *pid = NULL;
603
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
604
      error("Can't allocate memory for pid.");
605
606
607
608
609
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
610

611
612
613
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
614

615
616
      /* Reset the redo-count. */
      redo = 0;
617

618
      /* Loop over the remaining active parts in this cell. */
619
      for (int i = 0; i < count; i++) {
620

621
622
623
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
624

625
#ifdef SWIFT_DEBUG_CHECKS
626
        /* Is this part within the timestep? */
627
628
629
630
631
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

        /* Finish the density calculation */
        hydro_end_density(p);
632

633
634
        /* Did we get the right number of neighbours? */
        if (p->density.wcount > max_wcount || p->density.wcount < min_wcount) {
635

636
          float h_corr = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
637

638
639
          /* If no derivative, double the smoothing length. */
          if (p->density.wcount_dh == 0.0f) h_corr = p->h;
640

641
642
643
          /* Otherwise, compute the smoothing length update (Newton step). */
          else {
            h_corr = (target_wcount - p->density.wcount) / p->density.wcount_dh;
644

645
646
647
648
            /* Truncate to the range [ -p->h/2 , p->h ]. */
            h_corr = (h_corr < p->h) ? h_corr : p->h;
            h_corr = (h_corr > -0.5f * p->h) ? h_corr : -0.5f * p->h;
          }
649

650
651
          /* Ok, correct then */
          p->h += h_corr;
652

653
654
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
655

656
657
658
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
659

660
            /* Re-initialise everything */
661
            hydro_init_part(p, &s->hs);
662

663
664
            /* Off we go ! */
            continue;
665
666
667
668
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
669
          }
670
        }
671

672
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
673

674
        /* As of here, particle force variables will be set. */
675

676
677
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
678

679
680
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
681

682
683
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
684
685
      }

686
687
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
688

689
690
691
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
692

693
694
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
695

696
697
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
Matthieu Schaller's avatar
Matthieu Schaller committed
698

699
700
701
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
702

703
704
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
705

706
707
708
709
710
711
712
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
713

714
            }
715

716
717
718
719
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
720

721
722
723
724
725
726
727
728
729
730
731
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
732
733
734
          }
        }
      }
735
    }
736

737
738
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
739
      error("Smoothing length failed to converge on %i particles.", count);
740
741
    }
#else
742
743
    if (count)
      message("Smoothing length failed to converge on %i particles.", count);
744
#endif
745

746
747
748
    /* Be clean */
    free(pid);
  }
749

750
  if (timer) TIMER_TOC(timer_do_ghost);
751
752
}

753
/**
754
 * @brief Unskip any tasks associated with active cells.
755
756
 *
 * @param c The cell.
757
 * @param e The engine.
758
 */
759
static void runner_do_unskip(struct cell *c, struct engine *e) {
760

761
762
763
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

764
765
766
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;

767
  /* Recurse */
768
769
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
770
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
771
        struct cell *cp = c->progeny[k];
772
        runner_do_unskip(cp, e);
773
774
775
      }
    }
  }
776
777

  /* Unskip any active tasks. */
778
779
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
780
}
781

782
/**
783
 * @brief Mapper function to unskip active tasks.
784
785
786
787
788
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
789
790
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
791

792
793
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
794

795
796
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
797
    if (c != NULL) runner_do_unskip(c, e);
798
  }
799
}
800
801
802
803
804
805
806
/**
 * @brief Drift particles in real space.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
807
void runner_do_drift_particles(struct runner *r, struct cell *c, int timer) {
808

809
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
810

811
  cell_drift_particles(c, r->e);
812

813
  if (timer) TIMER_TOC(timer_drift);
814
}
815

816
817
818
819
820
821
822
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
823
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
824

825
826
827
828
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
829
  struct spart *restrict sparts = c->sparts;
830
831
  const int count = c->count;
  const int gcount = c->gcount;
832
  const int scount = c->scount;
833
  const integertime_t ti_current = e->ti_current;
834
  const double timeBase = e->timeBase;
835

836
837
838
  TIMER_TIC;

  /* Anything to do here? */
839
  if (!cell_is_starting(c, e)) return;
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_kick1(r, c->progeny[k], 0);
  } else {

    /* Loop over the parts in this cell. */
    for (int k = 0; k < count; k++) {

      /* Get a handle on the part. */
      struct part *restrict p = &parts[k];
      struct xpart *restrict xp = &xparts[k];

      /* If particle needs to be kicked */
855
      if (part_is_starting(p, e)) {
856
857
858

        const integertime_t ti_step = get_integer_timestep(p->time_bin);
        const integertime_t ti_begin =
859
            get_integer_time_begin(ti_current + 1, p->time_bin);
860

861
862
#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
Matthieu Schaller's avatar
Matthieu Schaller committed
863
            get_integer_time_end(ti_current + 1, p->time_bin);
864

Matthieu Schaller's avatar
Matthieu Schaller committed
865
        if (ti_begin != ti_current)
866
867
868
869
          error(
              "Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
              "ti_step=%lld time_bin=%d ti_current=%lld",
              ti_end, ti_begin, ti_step, p->time_bin, ti_current);
870
871
#endif

872
        /* do the kick */
873
        kick_part(p, xp, ti_begin, ti_begin + ti_step / 2, timeBase);
874
875
876
      }
    }

877
    /* Loop over the gparts in this cell. */
878
879
880
881
882
883
    for (int k = 0; k < gcount; k++) {

      /* Get a handle on the part. */
      struct gpart *restrict gp = &gparts[k];

      /* If the g-particle has no counterpart and needs to be kicked */
884
      if (gp->type == swift_type_dark_matter && gpart_is_starting(gp, e)) {
885

886
887
        const integertime_t ti_step = get_integer_timestep(gp->time_bin);
        const integertime_t ti_begin =
888
            get_integer_time_begin(ti_current + 1, gp->time_bin);
889

890
891
#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
Matthieu Schaller's avatar
Matthieu Schaller committed
892
            get_integer_time_end(ti_current + 1, gp->time_bin);
893

Matthieu Schaller's avatar
Matthieu Schaller committed
894
895
896
897
898
        if (ti_begin != ti_current)
          error(
              "Particle in wrong time-bin, ti_end=%lld, ti_begin=%lld, "
              "ti_step=%lld time_bin=%d ti_current=%lld",
              ti_end, ti_begin, ti_step, gp->time_bin, ti_current);
899
900
#endif

901
        /* do the kick */
902
        kick_gpart(gp, ti_begin, ti_begin + ti_step / 2, timeBase);
903
904
      }
    }
905
906
907
908
909
910
911
912

    /* Loop over the star particles in this cell. */
    for (int k = 0; k < scount; k++) {

      /* Get a handle on the s-part. */
      struct spart *restrict sp = &sparts[k];

      /* If particle needs to be kicked */
913
      if (spart_is_starting(sp, e)) {
914
915
916

        const integertime_t ti_step = get_integer_timestep(sp->time_bin);
        const integertime_t ti_begin =
917
            get_integer_time_begin(ti_current + 1, sp->time_bin);
918
919
920

#ifdef SWIFT_DEBUG_CHECKS
        const integertime_t ti_end =
921
            get_integer_time_end(ti_current + 1, sp->time_bin);
922

923
924
925
926