cell.c 204 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "multipole.h"
65
#include "pressure_floor.h"
66
#include "scheduler.h"
67
#include "space.h"
68
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
69
#include "star_formation.h"
Loic Hausammann's avatar
Loic Hausammann committed
70
#include "stars.h"
71
#include "task_order.h"
72
#include "timers.h"
73
#include "tools.h"
74
#include "tracers.h"
75

76
77
extern int engine_star_resort_task_depth;

78
79
80
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
81
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

169
170
171
172
173
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
174
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
175
176
  /* Number of cells in this subtree. */
  int count = 1;
177

178
179
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
180
    for (int k = 0; k < 8; k++)
181
182
183
184
185
186
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

187
/**
188
 * @brief Link the cells recursively to the given #part array.
189
190
191
192
193
194
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
195
int cell_link_parts(struct cell *c, struct part *parts) {
196
#ifdef SWIFT_DEBUG_CHECKS
197
198
199
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

200
  if (c->hydro.parts != NULL)
201
202
203
    error("Linking parts into a cell that was already linked");
#endif

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
220
 * @brief Link the cells recursively to the given #gpart array.
221
222
 *
 * @param c The #cell.
223
 * @param gparts The #gpart array.
224
225
226
 *
 * @return The number of particles linked.
 */
227
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
228
229
230
231
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

232
  if (c->grav.parts != NULL)
233
    error("Linking gparts into a cell that was already linked");
234
#endif
235

236
  c->grav.parts = gparts;
237
  c->grav.parts_rebuild = gparts;
238
239
240
241
242
243
244
245
246
247
248

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
249
  return c->grav.count;
250
251
}

252
253
254
255
256
257
258
259
260
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
261
262
263
264
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

265
  if (c->stars.parts != NULL)
266
267
268
    error("Linking sparts into a cell that was already linked");
#endif

269
  c->stars.parts = sparts;
270
  c->stars.parts_rebuild = sparts;
271
272
273
274
275
276
277
278
279
280
281

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
282
  return c->stars.count;
283
284
}

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

318
319
320
321
322
323
324
325
326
327
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
328
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
329
330
#ifdef WITH_MPI

331
332
333
334
335
336
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
337
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
356
357
358
    return count;
  } else {
    return 0;
359
  }
360
361
362
363

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
364
365
}

366
367
368
369
370
371
372
373
374
375
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
376
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
377
378
#ifdef WITH_MPI

379
380
381
382
383
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

384
385
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
386

387
    /* Recursively attach the gparts */
388
389
390
391
392
393
394
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }
395
396
397
398
  else {
    c->grav.parts = gparts;
    c->grav.parts_rebuild = gparts;
  }
399
400
401
402
403
404
405
406
407

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
408
409
410
    return count;
  } else {
    return 0;
411
  }
412
413
414
415

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
416
417
}

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/**
 * @brief Recursively nullify all the particle pointers in a cell hierarchy.
 *
 * Should only be used on foreign cells!
 *
 * This will make any task or action running on these cells likely crash.
 * Recreating the foreign links will be necessary.
 *
 * @param c The #cell to act on.
 */
void cell_unlink_foreign_particles(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Unlinking foreign particles in a local cell!");
#endif

  c->grav.parts = NULL;
  c->hydro.parts = NULL;
  c->stars.parts = NULL;
  c->black_holes.parts = NULL;

  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        cell_unlink_foreign_particles(c->progeny[k]);
      }
    }
  }
}

449
450
451
452
453
454
455
456
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
457
int cell_count_parts_for_tasks(const struct cell *c) {
458
459
#ifdef WITH_MPI

460
461
462
463
464
465
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
466
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
467
468
469
470
471
472
473
474
475
476
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
477
478
479
    return count;
  } else {
    return 0;
480
  }
481
482
483
484

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
485
486
}

487
488
489
490
491
492
493
494
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
495
int cell_count_gparts_for_tasks(const struct cell *c) {
496
497
#ifdef WITH_MPI

498
499
500
501
502
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

503
504
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
505
506
507
508
509
510
511
512
513
514
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
515
516
517
    return count;
  } else {
    return 0;
518
  }
519
520
521
522

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
523
524
}

525
526
527
528
529
530
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
531
532
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
533
534
535
 *
 * @return The number of packed cells.
 */
536
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
537
              const int with_gravity) {
538
539
#ifdef WITH_MPI

540
  /* Start by packing the data of the current cell. */
541
  pc->hydro.h_max = c->hydro.h_max;
542
  pc->stars.h_max = c->stars.h_max;
543
  pc->black_holes.h_max = c->black_holes.h_max;
544
545
546
547
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
548
  pc->stars.ti_end_min = c->stars.ti_end_min;
549
  pc->stars.ti_end_max = c->stars.ti_end_max;
550
551
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
552
553
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
554
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
555
  pc->stars.ti_old_part = c->stars.ti_old_part;
556
  pc->hydro.count = c->hydro.count;
557
558
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
559
  pc->black_holes.count = c->black_holes.count;
560
  pc->maxdepth = c->maxdepth;
561

562
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
563
  if (with_gravity) {
564
    const struct gravity_tensors *mp = c->grav.multipole;
565

566
567
568
569
570
571
572
573
574
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
575
576
  }

577
578
579
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
580
581

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
582
583
  int count = 1;
  for (int k = 0; k < 8; k++)
584
585
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
586
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
587
    } else {
588
      pc->progeny[k] = -1;
589
    }
590
591

  /* Return the number of packed cells used. */
592
  c->mpi.pcell_size = count;
593
  return count;
594
595
596
597
598

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
599
600
}

601
602
603
604
605
606
607
608
609
610
611
612
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
613
  tags[0] = c->mpi.tag;
614
615
616
617
618
619
620
621

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
622
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
623
624
625
626
627
628
629
630
631
632
633
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
void cell_pack_part_swallow(const struct cell *c,
                            struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  const struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    data[i] = parts[i].black_holes_data;
  }
}

void cell_unpack_part_swallow(struct cell *c,
                              const struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    parts[i].black_holes_data = data[i];
  }
}

656
657
658
659
660
661
662
void cell_pack_bpart_swallow(const struct cell *c,
                             struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  const struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
663
    data[i] = bparts[i].merger_data;
664
665
666
667
668
669
670
671
672
673
674
675
676
677
  }
}

void cell_unpack_bpart_swallow(struct cell *c,
                               const struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
    bparts[i].merger_data = data[i];
  }
}

678
679
680
681
682
683
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
684
685
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
686
687
688
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
689
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
690
                struct space *restrict s, const int with_gravity) {
691
692
693
#ifdef WITH_MPI

  /* Unpack the current pcell. */
694
  c->hydro.h_max = pc->hydro.h_max;
695
  c->stars.h_max = pc->stars.h_max;
696
  c->black_holes.h_max = pc->black_holes.h_max;
697
698
699
700
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
701
  c->stars.ti_end_min = pc->stars.ti_end_min;
702
  c->stars.ti_end_max = pc->stars.ti_end_max;
703
704
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
705
706
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
707
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
708
  c->stars.ti_old_part = pc->stars.ti_old_part;
709
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
710
  c->hydro.count = pc->hydro.count;
711
712
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
713
  c->black_holes.count = pc->black_holes.count;
714
715
  c->maxdepth = pc->maxdepth;

716
717
718
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
719

720
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
721
  if (with_gravity) {
722
    struct gravity_tensors *mp = c->grav.multipole;
723

724
725
726
727
728
729
730
731
732
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
733
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
734

735
736
737
738
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
739
  c->split = 0;
740
741
742
743
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
744
      temp->hydro.count = 0;
745
746
      temp->grav.count = 0;
      temp->stars.count = 0;
747
748
749
750
751
752
753
754
755
756
757
758
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
759
      temp->hydro.dx_max_part = 0.f;
760
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
761
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
762
      temp->stars.dx_max_sort = 0.f;
763
      temp->black_holes.dx_max_part = 0.f;
764
765
766
767
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
768
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
769
770
771
    }

  /* Return the total number of unpacked cells. */
772
  c->mpi.pcell_size = count;
773
774
775
776
777
778
779
780
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

781
782
783
784
785
786
787
788
789
790
791
792
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
793
  c->mpi.tag = tags[0];
794
795
796
797
798
799
800
801
802
803
804

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
805
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
806
807
808
809
810
811
812
813
814
815
816
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

817
818
819
820
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
821
 * @param pcells (output) The end-of-timestep information we pack into
822
823
824
 *
 * @return The number of packed cells.
 */
825
826
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
827
828
#ifdef WITH_MPI

829
  /* Pack this cell's data. */
830
831
832
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
833

834
835
836
837
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
838
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
839
840
841
842
    }

  /* Return the number of packed values. */
  return count;
843
844
845
846
847

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
848
849
}

850
851
852
853
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
854
 * @param pcells The end-of-timestep information to unpack
855
856
857
 *
 * @return The number of cells created.
 */
858
859
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
860
861
#ifdef WITH_MPI

862
  /* Unpack this cell's data. */
863
864
865
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
866

867
868
869
870
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
1002
1003
1004
    }

  /* Return the number of packed values. */
1005
  return count;
1006
1007
1008
1009
1010

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
1011
}
1012

1013
1014
1015
1016
1017
1018
1019
1020
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
1021
1022
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
1055
1056
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1081
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
1082
1083
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
1084
1085
1086
1087
1088
1089
1090
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1091
                         struct gravity_tensors *restrict pcells) {
1092
1093
1094
#ifdef WITH_MPI

  /* Pack this cell's data. */
1095
  pcells[0] = *c->grav.multipole;
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1122
                           struct gravity_tensors *restrict pcells) {
1123
1124
1125
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1126
  *c->grav.multipole = pcells[0];
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;
1161
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
1162

1163
1164
1165
1166
  /* Pack this cell's data. */
  pcells[0].grav.delta_from_rebuild = c->grav.parts - c->grav.parts_rebuild;
  pcells[0].grav.count = c->grav.count;

1167
#ifdef SWIFT_DEBUG_CHECKS
1168
  /* Stars */
1169
1170
1171
1172
1173
1174
1175
1176
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

  /* Grav */
  if (c->grav.parts_rebuild == NULL)
    error("Grav. particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].grav.delta_from_rebuild < 0)
    error("Grav part pointer moved in the wrong direction!");

  if (pcells[0].grav.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
1222
1223
  if (c->grav.parts_rebuild == NULL)
    error("Grav particles array at rebuild is NULL!");
1224
1225
1226
1227
1228
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;
1229
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
1230

1231
1232
1233
  c->grav.count = pcells[0].grav.count;
  c->grav.parts = c->grav.parts_rebuild + pcells[0].grav.delta_from_rebuild;

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1250
/**
1251
 * @brief Lock a cell for access to its array of #part and hold its parents.
1252
1253
 *
 * @param c The #cell.
1254
 * @return 0 on success, 1 on failure
1255
 */
1256
int cell_locktree(struct cell *c) {
1257
  TIMER_TIC;
1258
1259

  /* First of all, try to lock this cell. */
1260
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1261
1262
1263
1264
1265
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1266
  if (c->hydro.hold) {
1267
    /* Unlock this cell. */
1268
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1269
1270
1271
1272
1273
1274
1275

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1276
  struct cell *finger;
1277
1278
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1279
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1280
1281

    /* Increment the hold. */
1282
    atomic_inc(&finger->hydro.hold);
1283
1284

    /* Unlock the cell. */
1285
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1297
1298
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1299
      atomic_dec(&finger2->hydro.hold);
1300
1301

    /* Unlock this cell. */
1302
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1303
1304
1305
1306
1307
1308
1309

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1310
1311
1312
1313
1314
1315
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1316
int cell_glocktree(struct cell *c) {
1317
  TIMER_TIC;
1318
1319

  /* First of all, try to lock this cell. */
1320
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1321
1322
1323
1324
1325
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1326
  if (c->grav.phold) {
1327
    /* Unlock this cell. */
1328
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1329
1330
1331
1332
1333
1334
1335

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1336
  struct cell *finger;
1337
1338
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1339
    if (lock_trylock(&finger->grav.plock) != 0) break;
1340
1341

    /* Increment the hold. */
1342
    atomic_inc(&finger->grav.phold);
1343
1344

    /* Unlock the cell. */
1345
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1357
1358
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1359
      atomic_dec(&finger2->grav.phold);
1360
1361

    /* Unlock this cell. */
1362
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1363
1364
1365
1366
1367
1368

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1369

1370
1371
1372
1373
1374
1375
1376
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
1377
1378
  TIMER_TIC;