hydro_iact.h 10.9 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
#ifndef SWIFT_RUNNER_IACT_LEGACY_H
21
#define SWIFT_RUNNER_IACT_LEGACY_H
22

23
/* Includes. */
24
#include "const.h"
25
#include "kernel.h"
26
#include "part.h"
27
28
#include "vector.h"

29

30
31
32
/**
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
33
34
35
36
37
38
 * The interactions computed here are the ones presented in the Gadget-2 paper
 *and use the same
 * numerical coefficients as the Gadget-2 code. When used with the Spline-3
 *kernel, the results
 * should be equivalent to the ones obtained with Gadget-2 up to the rounding
 *errors and interactions
39
40
 * missed by the Gadget-2 tree-code neighbours search.
 *
41
42
 * The code uses internal energy instead of entropy as a thermodynamical
 *variable.
43
44
45
46
47
48
 */

/**
 * @brief Density loop
 */

49
50
51
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

52
53
  float wi, wi_dx;
  float wj, wj_dx;
54
  float dv[3], curlvr[3];
55

56
  /* Get the masses. */
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  const float mi = pj->mass;
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
  pi->rho_dh -= mj * kernel_igamma * (3.f * wi + ui * wi_dx);
  
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
  pi->density.wcount_dh -= ui * wi_dx;


  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
  pj->rho_dh -= mi * kernel_igamma * (3.f * wj + uj * wj_dx);
  
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
  pj->density.wcount_dh -= uj * wj_dx;
90

91
92
93
94
  
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
  
95
96
97
98
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
99
100
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

101
102
  pi->div_v += faci * dvdr;
  pj->div_v += facj * dvdr;
103
104
105
106
107
108

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

109
110
111
  pi->rot_v[0] += faci * curlvr[0];
  pi->rot_v[1] += faci * curlvr[1];
  pi->rot_v[2] += faci * curlvr[2];
112

113
114
115
  pj->rot_v[0] += facj * curlvr[0];
  pj->rot_v[1] += facj * curlvr[1];
  pj->rot_v[2] += facj * curlvr[2];
116
117
}

118
119
120
121
122

/**
 * @brief Density loop (non-symmetric version)
 */

123
124
125
126
127
128
129
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
130
  const float mj = pj->mass;
131
132

  /* Get r and r inverse. */
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  const float r = sqrtf(r2);
  const float ri = 1.0f / r;
  
  /* Compute the kernel function */
  const float h_inv = 1.0f / hi;
  const float u = r * h_inv;
  kernel_deval(u, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
  pi->rho_dh -= mj * kernel_igamma * (3.f * wi + u * wi_dx);

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
  pi->density.wcount_dh -= u * wi_dx;
148

149
150
151
  const float ih3 = h_inv * h_inv * h_inv;
  const float ih4 = h_inv * h_inv * h_inv * h_inv;
  
152
153
154
155
156
157
158
159
160
  const float fac = mj * wi_dx * ri;
  
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
  pi->div_v -= fac * dvdr;

161
  if(pi->id == 1000 && pj->id == 1203)
162
    message("Interacting with %lld. r=%e hi=%e u=%e W=%e dW/dx=%e dh_drho1=%e dh_drho2=%e\n fac=%e dvdr=%e",
163
164
165
166
167
168
169
170
	    pj->id,
	    r,
	    hi,
	    u,
	    wi * ih3,
	    wi_dx * ih4,
	    -mj * (3.f * kernel_igamma * wi) * ih4,
	    -mj * u * wi_dx * kernel_igamma * ih4,
171
	    fac * ih4,
172
	    dvdr
173
174
175
	    );

  
176
177
178
179
180
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

181
182
183
  pi->rot_v[0] += fac * curlvr[0];
  pi->rot_v[1] += fac * curlvr[1];
  pi->rot_v[2] += fac * curlvr[2];  
184
185
}

186
187
188
189
190

/**
 * @brief Force loop
 */

191
192
193
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
  
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
  //const float mi = pi->mass;
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;
  const float pressurei = pi->pressure;
  const float pressurej = pj->pressure;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
  const float hi2_inv = hi_inv * hi_inv;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
  const float wi_dr = hi2_inv * hi2_inv * wi_dx;

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
  const float hj2_inv = hj_inv * hj_inv;
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
  const float wj_dr = hj2_inv * hj2_inv * wj_dx;

  /* Compute gradient terms */
  const float P_over_rho_i = pressurei / (rhoi * rhoi) * pi->rho_dh;
  const float P_over_rho_j = pressurej / (rhoj * rhoj) * pj->rho_dh;

  /* Compute sound speeds */
  const float ci = sqrtf(const_hydro_gamma * pressurei / rhoi);
  const float cj = sqrtf(const_hydro_gamma * pressurej / rhoj);
  float v_sig = ci + cj;
  
  /* Compute dv dot r. */
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] + (pi->v[1] - pj->v[1]) * dx[1] +
    (pi->v[2] - pj->v[2]) * dx[2];

  /* Artificial viscosity term */
  float visc = 0.f;
  if (dvdr < 0.f) {
    const float mu_ij = fac_mu * dvdr * r_inv;
    v_sig -= 3.f * mu_ij;
    const float rho_ij = 0.5f * (rhoi + rhoj);
    const float balsara_i = fabsf(pi->div_v) / (fabsf(pi->div_v) + pi->curl_v + 0.0001 * ci / fac_mu / hi);
    const float balsara_j = fabsf(pj->div_v) / (fabsf(pj->div_v) + pj->curl_v + 0.0001 * cj / fac_mu / hj);
    visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij / rho_ij * (balsara_i + balsara_j);
  }

  /* Now, convolve with the kernel */
  const float visc_term = 0.5f * mj * visc * (wi_dr + wj_dr) * r_inv;
  const float sph_term = mj * (P_over_rho_i * wi_dr + P_over_rho_j * wj_dr) * r_inv;

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

  if(pi->id == 1000 && pj->id == 1203)
    message("Interacting with %lld. r=%e hi=%e hj=%e dWi/dx=%e dWj/dx=%3e dvdr=%e visc=%e sph=%e",
	    pj->id,
	    r,
	    2*hi,
	    2*hj,
	    wi_dr,
	    wj_dr,
	    dvdr,
	    visc_term,
	    sph_term
	    );
  if(pi->id == 1203 && pj->id == 1000)
    message("oO");

  
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  /* Use the force Luke ! */
  pi->a[0] -= acc * dx[0];
  pi->a[1] -= acc * dx[1];
  pi->a[2] -= acc * dx[2];

  pj->a[0] += acc * dx[0];
  pj->a[1] += acc * dx[1];
  pj->a[2] += acc * dx[2];

  /* Update the signal velocity. */
  pi->v_sig = fmaxf(pi->v_sig, v_sig) ;
  pj->v_sig = fmaxf(pj->v_sig, v_sig) ;
  
  /* Change in entropy */
285
286
  pi->entropy_dt -= 0.5f * visc_term * dvdr;
  pj->entropy_dt += 0.5f * visc_term * dvdr;
287
}
288
289
290
291
292
293


/**
 * @brief Force loop (non-symmetric version)
 */

294
295
296
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
  
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
  //const float mi = pi->mass;
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;
  const float pressurei = pi->pressure;
  const float pressurej = pj->pressure;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
  const float hi2_inv = hi_inv * hi_inv;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
  const float wi_dr = hi2_inv * hi2_inv * wi_dx;

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
  const float hj2_inv = hj_inv * hj_inv;
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
  const float wj_dr = hj2_inv * hj2_inv * wj_dx;

  /* Compute gradient terms */
  const float P_over_rho_i = pressurei / (rhoi * rhoi) * pi->rho_dh;
  const float P_over_rho_j = pressurej / (rhoj * rhoj) * pj->rho_dh;

  /* Compute sound speeds */
  const float ci = sqrtf(const_hydro_gamma * pressurei / rhoi);
  const float cj = sqrtf(const_hydro_gamma * pressurej / rhoj);
  float v_sig = ci + cj;
  
  /* Compute dv dot r. */
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] + (pi->v[1] - pj->v[1]) * dx[1] +
    (pi->v[2] - pj->v[2]) * dx[2];

  /* Artificial viscosity term */
  float visc = 0.f;
  if (dvdr < 0.f) {
    const float mu_ij = fac_mu * dvdr * r_inv;
    v_sig -= 3.f * mu_ij;
    const float rho_ij = 0.5f * (rhoi + rhoj);
    const float balsara_i = fabsf(pi->div_v) / (fabsf(pi->div_v) + pi->curl_v + 0.0001 * ci / fac_mu / hi);
    const float balsara_j = fabsf(pj->div_v) / (fabsf(pj->div_v) + pj->curl_v + 0.0001 * cj / fac_mu / hj);
    visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij / rho_ij * (balsara_i + balsara_j);
  }

  /* Now, convolve with the kernel */
  const float visc_term = 0.5f * mj * visc * (wi_dr + wj_dr) * r_inv;
  const float sph_term = mj * (P_over_rho_i * wi_dr + P_over_rho_j * wj_dr) * r_inv;

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
356
  
357
358
359
360
361
362
363
364
365
  /* Use the force Luke ! */
  pi->a[0] -= acc * dx[0];
  pi->a[1] -= acc * dx[1];
  pi->a[2] -= acc * dx[2];

  /* Update the signal velocity. */
  pi->v_sig = fmaxf(pi->v_sig, v_sig) ;
  
  /* Change in entropy */
366
  pi->entropy_dt -= 0.5f * visc_term * dvdr;
367
}
368
369


370
#endif /* SWIFT_RUNNER_IACT_LEGACY_H */