cell.c 181 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
56
#include "error.h"
57
#include "gravity.h"
58
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
59
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
60
#include "memswap.h"
61
#include "minmax.h"
62
#include "scheduler.h"
63
#include "space.h"
64
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
65
#include "stars.h"
66
#include "timers.h"
67
#include "tools.h"
68
#include "tracers.h"
69

70
71
72
/* Global variables. */
int cell_next_tag = 0;

73
74
75
76
77
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
78
int cell_getsize(struct cell *c) {
79

Pedro Gonnet's avatar
Pedro Gonnet committed
80
81
  /* Number of cells in this subtree. */
  int count = 1;
82

83
84
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
85
    for (int k = 0; k < 8; k++)
86
87
88
89
90
91
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

92
/**
93
 * @brief Link the cells recursively to the given #part array.
94
95
96
97
98
99
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
100
101
int cell_link_parts(struct cell *c, struct part *parts) {

102
#ifdef SWIFT_DEBUG_CHECKS
103
104
105
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

106
  if (c->hydro.parts != NULL)
107
108
109
    error("Linking parts into a cell that was already linked");
#endif

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
126
 * @brief Link the cells recursively to the given #gpart array.
127
128
 *
 * @param c The #cell.
129
 * @param gparts The #gpart array.
130
131
132
 *
 * @return The number of particles linked.
 */
133
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
134
135
136
137
138

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

139
  if (c->grav.parts != NULL)
140
    error("Linking gparts into a cell that was already linked");
141
#endif
142

143
  c->grav.parts = gparts;
144
145
146
147
148
149
150
151
152
153
154

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
155
  return c->grav.count;
156
157
}

158
159
160
161
162
163
164
165
166
167
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

168
169
170
171
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

172
  if (c->stars.parts != NULL)
173
174
175
    error("Linking sparts into a cell that was already linked");
#endif

176
  c->stars.parts = sparts;
177
178
179
180
181
182
183
184
185
186
187

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
188
  return c->stars.count;
189
190
}

191
192
193
194
195
196
197
198
199
200
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
201
202
int cell_link_foreign_parts(struct cell *c, struct part *parts) {

203
204
#ifdef WITH_MPI

205
206
207
208
209
210
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
211
  if (c->mpi.hydro.recv_xv != NULL) {
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
230
231
232
    return count;
  } else {
    return 0;
233
  }
234
235
236
237

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
238
239
}

240
241
242
243
244
245
246
247
248
249
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
250
251
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {

252
253
#ifdef WITH_MPI

254
255
256
257
258
259
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
260
  if (c->mpi.grav.recv != NULL) {
261

262
    /* Recursively attach the gparts */
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
279
280
281
    return count;
  } else {
    return 0;
282
  }
283
284
285
286

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
287
288
}

289
290
291
292
293
294
295
296
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
297
298
int cell_count_parts_for_tasks(const struct cell *c) {

299
300
#ifdef WITH_MPI

301
302
303
304
305
306
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
307
  if (c->mpi.hydro.recv_xv != NULL) {
308
309
310
311
312
313
314
315
316
317
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
318
319
320
    return count;
  } else {
    return 0;
321
  }
322
323
324
325

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
326
327
}

328
329
330
331
332
333
334
335
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
336
337
int cell_count_gparts_for_tasks(const struct cell *c) {

338
339
#ifdef WITH_MPI

340
341
342
343
344
345
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
346
  if (c->mpi.grav.recv != NULL) {
347
348
349
350
351
352
353
354
355
356
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
357
358
359
    return count;
  } else {
    return 0;
360
  }
361
362
363
364

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
365
366
}

367
368
369
370
371
372
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
373
374
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
375
376
377
 *
 * @return The number of packed cells.
 */
378
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
379
              const int with_gravity) {
380

381
382
#ifdef WITH_MPI

383
  /* Start by packing the data of the current cell. */
384
  pc->hydro.h_max = c->hydro.h_max;
385
  pc->stars.h_max = c->stars.h_max;
386
387
388
389
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
390
  pc->stars.ti_end_min = c->stars.ti_end_min;
391
  pc->stars.ti_end_max = c->stars.ti_end_max;
392
393
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
394
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
395
  pc->stars.ti_old_part = c->stars.ti_old_part;
396
  pc->hydro.count = c->hydro.count;
397
398
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
399
  pc->maxdepth = c->maxdepth;
400

401
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
402
  if (with_gravity) {
403
    const struct gravity_tensors *mp = c->grav.multipole;
404

405
406
407
408
409
410
411
412
413
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
414
415
  }

416
417
418
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
419
420

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
421
422
  int count = 1;
  for (int k = 0; k < 8; k++)
423
424
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
425
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
426
    } else {
427
      pc->progeny[k] = -1;
428
    }
429
430

  /* Return the number of packed cells used. */
431
  c->mpi.pcell_size = count;
432
  return count;
433
434
435
436
437

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
438
439
}

440
441
442
443
444
445
446
447
448
449
450
451
452
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
453
  tags[0] = c->mpi.tag;
454
455
456
457
458
459
460
461

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
462
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
463
464
465
466
467
468
469
470
471
472
473
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

474
475
476
477
478
479
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
480
481
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
482
483
484
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
485
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
486
                struct space *restrict s, const int with_gravity) {
487
488
489
490

#ifdef WITH_MPI

  /* Unpack the current pcell. */
491
  c->hydro.h_max = pc->hydro.h_max;
492
  c->stars.h_max = pc->stars.h_max;
493
494
495
496
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
497
  c->stars.ti_end_min = pc->stars.ti_end_min;
498
  c->stars.ti_end_max = pc->stars.ti_end_max;
499
500
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
501
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
502
  c->stars.ti_old_part = pc->stars.ti_old_part;
503
  c->hydro.count = pc->hydro.count;
504
505
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
506
507
  c->maxdepth = pc->maxdepth;

508
509
510
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
511

512
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
513
  if (with_gravity) {
514

515
    struct gravity_tensors *mp = c->grav.multipole;
516

517
518
519
520
521
522
523
524
525
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
526
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
527

528
529
530
531
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
532
  c->split = 0;
533
534
535
536
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
537
      temp->hydro.count = 0;
538
539
      temp->grav.count = 0;
      temp->stars.count = 0;
540
541
542
543
544
545
546
547
548
549
550
551
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
552
      temp->hydro.dx_max_part = 0.f;
553
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
554
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
555
      temp->stars.dx_max_sort = 0.f;
556
557
558
559
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
560
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
561
562
563
    }

  /* Return the total number of unpacked cells. */
564
  c->mpi.pcell_size = count;
565
566
567
568
569
570
571
572
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

573
574
575
576
577
578
579
580
581
582
583
584
585
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
586
  c->mpi.tag = tags[0];
587
588
589
590
591
592
593
594
595
596
597

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
598
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
599
600
601
602
603
604
605
606
607
608
609
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

610
611
612
613
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
614
 * @param pcells (output) The end-of-timestep information we pack into
615
616
617
 *
 * @return The number of packed cells.
 */
618
619
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
620

621
622
#ifdef WITH_MPI

623
  /* Pack this cell's data. */
624
625
626
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
627

628
629
630
631
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
632
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
633
634
635
636
    }

  /* Return the number of packed values. */
  return count;
637
638
639
640
641

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
642
643
}

644
645
646
647
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
648
 * @param pcells The end-of-timestep information to unpack
649
650
651
 *
 * @return The number of cells created.
 */
652
653
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
654

655
656
#ifdef WITH_MPI

657
  /* Unpack this cell's data. */
658
659
660
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
661

662
663
664
665
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
801
802
803
    }

  /* Return the number of packed values. */
804
  return count;
805
806
807
808
809

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
810
}
811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_black_holes(struct cell *restrict c,
                             struct pcell_step_black_holes *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_black_holes(struct cell *restrict c,
                               struct pcell_step_black_holes *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

880
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
881
882
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
883
884
885
886
887
888
889
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
890
                         struct gravity_tensors *restrict pcells) {
891
892
893
894

#ifdef WITH_MPI

  /* Pack this cell's data. */
895
  pcells[0] = *c->grav.multipole;
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
922
                           struct gravity_tensors *restrict pcells) {
923
924
925
926

#ifdef WITH_MPI

  /* Unpack this cell's data. */
927
  *c->grav.multipole = pcells[0];
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

945
/**
946
 * @brief Lock a cell for access to its array of #part and hold its parents.
947
948
 *
 * @param c The #cell.
949
 * @return 0 on success, 1 on failure
950
 */
951
952
953
954
955
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
956
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
957
958
959
960
961
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
962
  if (c->hydro.hold) {
963
964

    /* Unlock this cell. */
965
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
966
967
968
969
970
971
972

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
973
  struct cell *finger;
974
975
976
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
977
    if (lock_trylock(&finger->hydro.lock) != 0) break;
978
979

    /* Increment the hold. */
980
    atomic_inc(&finger->hydro.hold);
981
982

    /* Unlock the cell. */
983
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
984
985
986
987
988
989
990
991
992
993
994
995
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
996
997
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
998
      atomic_dec(&finger2->hydro.hold);
999
1000

    /* Unlock this cell. */
1001
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1002
1003
1004
1005
1006
1007
1008

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1009
1010
1011
1012
1013
1014
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1015
1016
1017
1018
1019
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1020
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1021
1022
1023
1024
1025
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1026
  if (c->grav.phold) {
1027
1028

    /* Unlock this cell. */
1029
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1030
1031
1032
1033
1034
1035
1036

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1037
  struct cell *finger;
1038
1039
1040
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1041
    if (lock_trylock(&finger->grav.plock) != 0) break;
1042
1043

    /* Increment the hold. */
1044
    atomic_inc(&finger->grav.phold);
1045
1046

    /* Unlock the cell. */
1047
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1060
1061
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1062
      atomic_dec(&finger2->grav.phold);
1063
1064

    /* Unlock this cell. */
1065
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1066
1067
1068
1069
1070
1071

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1084
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1085
1086
1087
1088
1089
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1090
  if (c->grav.mhold) {
1091
1092

    /* Unlock this cell. */
1093
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1105
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1106
1107

    /* Increment the hold. */
1108
    atomic_inc(&finger->grav.mhold);
1109
1110

    /* Unlock the cell. */
1111
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1126
      atomic_dec(&finger2->grav.mhold);
1127
1128

    /* Unlock this cell. */
1129
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1130
1131
1132
1133
1134
1135
1136

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1148
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1149
1150
1151
1152
1153
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1154
  if (c->stars.hold) {
1155
1156

    /* Unlock this cell. */
1157
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1169
    if (lock_trylock(&finger->stars.lock) != 0) break;
1170
1171

    /* Increment the hold. */
1172
    atomic_inc(&finger->stars.hold);
1173
1174

    /* Unlock the cell. */
1175
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1190
      atomic_dec(&finger2->stars.hold);
1191
1192

    /* Unlock this cell. */
1193
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1194
1195
1196
1197
1198
1199
1200

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1201
/**
1202
 * @brief Unlock a cell's parents for access to #part array.
1203
1204
1205
 *
 * @param c The #cell.
 */
1206
1207
1208
1209
1210
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1211
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1212
1213

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1214
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1215
    atomic_dec(&finger->hydro.hold);
1216
1217
1218
1219

  TIMER_TOC(timer_locktree);
}

1220
1221
1222
1223
1224
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1225
1226
1227
1228
1229
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1230
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1231
1232

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1233
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1234
    atomic_dec(&finger->grav.phold);
1235
1236
1237
1238

  TIMER_TOC(timer_locktree);
}

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1249
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1250
1251
1252

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1253
    atomic_dec(&finger->grav.mhold);
1254
1255
1256
1257

  TIMER_TOC(timer_locktree);
}

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1268
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1269
1270
1271

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1272
    atomic_dec(&finger->stars.hold);
1273
1274
1275
1276

  TIMER_TOC(timer_locktree);
}

1277
1278
1279
1280
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
1281
 * @param parts_offset Offset of the cell parts array relative to the
1282
 *        space's parts array, i.e. c->hydro.parts - s->parts.
1283
 * @param sparts_offset Offset of the cell sparts array relative to the
1284
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
1285
1286
1287
 * @param bparts_offset Offset of the cell bparts array relative to the
 *        space's bparts array, i.e. c->black_holes.parts -
 * s->black_holes.parts.
1288
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
1289
 * entries, used for sorting indices.
1290
1291
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
1292
1293
 * @param bbuff A buffer with at least max(c->black_holes.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
1294
 * @param gbuff A buffer with at least max(c->hydro.count, c->grav.count)
1295
 * entries, used for sorting indices for the gparts.
1296
 */
1297
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
1298
1299
                ptrdiff_t bparts_offset, struct cell_buff *buff,
                struct cell_buff *sbuff, struct cell_buff *bbuff,
Pedro Gonnet's avatar