hydro_iact.h 34.1 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
 ******************************************************************************/
20
21
#ifndef SWIFT_GADGET2_HYDRO_IACT_H
#define SWIFT_GADGET2_HYDRO_IACT_H
22
23

/**
24
 * @file Gadget2/hydro_iact.h
25
26
 * @brief SPH interaction functions following the Gadget-2 version of SPH.
 *
27
 * The interactions computed here are the ones presented in the Gadget-2 paper
28
29
 * Springel, V., MNRAS, Volume 364, Issue 4, pp. 1105-1134.
 * We use the same numerical coefficients as the Gadget-2 code. When used with
30
31
32
 * the Spline-3 kernel, the results should be equivalent to the ones obtained
 * with Gadget-2 up to the rounding errors and interactions missed by the
 * Gadget-2 tree-code neighbours search.
33
34
 */

lhausamm's avatar
lhausamm committed
35
#include "cooling.h"
36
#include "cache.h"
James Willis's avatar
James Willis committed
37
#include "minmax.h"
38

39
40
41
/**
 * @brief Density loop
 */
42
43
44
__attribute__((always_inline)) INLINE static void runner_iact_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

45
46
  float wi, wi_dx;
  float wj, wj_dx;
47
  float dv[3], curlvr[3];
48

49
  /* Get the masses. */
50
  const float mi = pi->mass;
51
52
53
54
55
56
57
58
59
60
61
62
63
  const float mj = pj->mass;

  /* Get r and r inverse. */
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Compute the kernel function for pi */
  const float hi_inv = 1.f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);

  /* Compute contribution to the density */
  pi->rho += mj * wi;
64
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
65

66
67
  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
68
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
69
70
71
72
73
74
75
76

  /* Compute the kernel function for pj */
  const float hj_inv = 1.f / hj;
  const float uj = r * hj_inv;
  kernel_deval(uj, &wj, &wj_dx);

  /* Compute contribution to the density */
  pj->rho += mi * wj;
77
  pj->density.rho_dh -= mi * (hydro_dimension * wj + uj * wj_dx);
78

79
80
  /* Compute contribution to the number of neighbours */
  pj->density.wcount += wj;
81
  pj->density.wcount_dh -= (hydro_dimension * wj + uj * wj_dx);
82

83
84
  const float faci = mj * wi_dx * r_inv;
  const float facj = mi * wj_dx * r_inv;
85

86
87
88
89
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
90
91
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];

92
93
  pi->density.div_v -= faci * dvdr;
  pj->density.div_v -= facj * dvdr;
94
95
96
97
98
99

  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

100
101
102
  pi->density.rot_v[0] += faci * curlvr[0];
  pi->density.rot_v[1] += faci * curlvr[1];
  pi->density.rot_v[2] += faci * curlvr[2];
103

104
105
106
  pj->density.rot_v[0] += facj * curlvr[0];
  pj->density.rot_v[1] += facj * curlvr[1];
  pj->density.rot_v[2] += facj * curlvr[2];
107

lhausamm's avatar
lhausamm committed
108
109
  cooling_density_iact(wi, wj, pi, pj);

110
#ifdef DEBUG_INTERACTIONS_SPH
111
  /* Update ngb counters */
112
  if (pi->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
113
    pi->ids_ngbs_density[pi->num_ngb_density] = pj->id;
James Willis's avatar
James Willis committed
114
  ++pi->num_ngb_density;
115

116
  if (pj->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
117
    pj->ids_ngbs_density[pj->num_ngb_density] = pi->id;
James Willis's avatar
James Willis committed
118
  ++pj->num_ngb_density;
119
#endif
120
121
}

122
123
124
/**
 * @brief Density loop (non-symmetric version)
 */
125
126
127
128
129
130
131
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_density(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

  float wi, wi_dx;
  float dv[3], curlvr[3];

  /* Get the masses. */
132
  const float mj = pj->mass;
133
134

  /* Get r and r inverse. */
135
  const float r = sqrtf(r2);
136
  const float r_inv = 1.0f / r;
137

138
  /* Compute the kernel function */
139
140
141
  const float hi_inv = 1.0f / hi;
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
142
143
144

  /* Compute contribution to the density */
  pi->rho += mj * wi;
145
  pi->density.rho_dh -= mj * (hydro_dimension * wi + ui * wi_dx);
146
147
148

  /* Compute contribution to the number of neighbours */
  pi->density.wcount += wi;
149
  pi->density.wcount_dh -= (hydro_dimension * wi + ui * wi_dx);
150

151
  const float fac = mj * wi_dx * r_inv;
152

153
154
155
156
157
  /* Compute dv dot r */
  dv[0] = pi->v[0] - pj->v[0];
  dv[1] = pi->v[1] - pj->v[1];
  dv[2] = pi->v[2] - pj->v[2];
  const float dvdr = dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2];
158
  pi->density.div_v -= fac * dvdr;
159

160
161
162
163
164
  /* Compute dv cross r */
  curlvr[0] = dv[1] * dx[2] - dv[2] * dx[1];
  curlvr[1] = dv[2] * dx[0] - dv[0] * dx[2];
  curlvr[2] = dv[0] * dx[1] - dv[1] * dx[0];

165
166
167
  pi->density.rot_v[0] += fac * curlvr[0];
  pi->density.rot_v[1] += fac * curlvr[1];
  pi->density.rot_v[2] += fac * curlvr[2];
168

169
#ifdef DEBUG_INTERACTIONS_SPH
170
  /* Update ngb counters */
171
  if (pi->num_ngb_density < MAX_NUM_OF_NEIGHBOURS)
172
    pi->ids_ngbs_density[pi->num_ngb_density] = pj->id;
James Willis's avatar
James Willis committed
173
  ++pi->num_ngb_density;
174
#endif
175
176
}

177
#ifdef WITH_VECTORIZATION
178
179
180
181
182

/**
 * @brief Density interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
183
__attribute__((always_inline)) INLINE static void
Matthieu Schaller's avatar
Matthieu Schaller committed
184
185
186
187
188
189
190
runner_iact_nonsym_1_vec_density(vector *r2, vector *dx, vector *dy, vector *dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
191
                                 mask_t mask) {
192

193
  vector r, ri, ui, wi, wi_dx;
194
195
196
  vector dvx, dvy, dvz;
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
James Willis's avatar
James Willis committed
197

198
  /* Fill the vectors. */
199
200
201
202
  const vector mj = vector_load(Mj);
  const vector vjx = vector_load(Vjx);
  const vector vjy = vector_load(Vjy);
  const vector vjz = vector_load(Vjz);
203
204
205
206
207

  /* Get the radius and inverse radius. */
  ri = vec_reciprocal_sqrt(*r2);
  r.v = vec_mul(r2->v, ri.v);

208
  ui.v = vec_mul(r.v, hi_inv.v);
209
210

  /* Calculate the kernel for two particles. */
211
  kernel_deval_1_vec(&ui, &wi, &wi_dx);
212
213
214
215
216
217
218
219
220
221

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
  dvdr.v = vec_mul(dvdr.v, ri.v);

222
223
224
225
226
227
228
229
230
231
232
  /* Compute dv cross r */
  curlvrx.v =
      vec_fma(dvy.v, dz->v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy->v)));
  curlvry.v =
      vec_fma(dvz.v, dx->v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz->v)));
  curlvrz.v =
      vec_fma(dvx.v, dy->v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx->v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);

233
234
  vector wcount_dh_update;
  wcount_dh_update.v =
James Willis's avatar
James Willis committed
235
      vec_fma(vec_set1(hydro_dimension), wi.v, vec_mul(ui.v, wi_dx.v));
236

237
  /* Mask updates to intermediate vector sums for particle pi. */
238
  rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
239
240
  rho_dhSum->v =
      vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v), mask);
241
  wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
242
  wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update.v, mask);
James Willis's avatar
James Willis committed
243
244
245
246
247
248
249
250
  div_vSum->v =
      vec_mask_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
  curlvxSum->v = vec_mask_add(curlvxSum->v,
                              vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
  curlvySum->v = vec_mask_add(curlvySum->v,
                              vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
  curlvzSum->v = vec_mask_add(curlvzSum->v,
                              vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
251
252
}

253
/**
James Willis's avatar
James Willis committed
254
255
 * @brief Density interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
256
257
 */
__attribute__((always_inline)) INLINE static void
James Willis's avatar
James Willis committed
258
259
260
261
262
263
264
265
runner_iact_nonsym_2_vec_density(float *R2, float *Dx, float *Dy, float *Dz,
                                 vector hi_inv, vector vix, vector viy,
                                 vector viz, float *Vjx, float *Vjy, float *Vjz,
                                 float *Mj, vector *rhoSum, vector *rho_dhSum,
                                 vector *wcountSum, vector *wcount_dhSum,
                                 vector *div_vSum, vector *curlvxSum,
                                 vector *curlvySum, vector *curlvzSum,
                                 mask_t mask, mask_t mask2, short mask_cond) {
266

267
268
  vector r, ri, ui, wi, wi_dx;
  vector dvx, dvy, dvz;
269
270
  vector dvdr;
  vector curlvrx, curlvry, curlvrz;
271
272
  vector r_2, ri2, ui2, wi2, wi_dx2;
  vector dvx2, dvy2, dvz2;
273
274
275
  vector dvdr2;
  vector curlvrx2, curlvry2, curlvrz2;

James Willis's avatar
James Willis committed
276
  /* Fill the vectors. */
277
278
279
280
281
282
283
284
285
286
287
288
289
290
  const vector mj = vector_load(Mj);
  const vector mj2 = vector_load(&Mj[VEC_SIZE]);
  const vector vjx = vector_load(Vjx);
  const vector vjx2 = vector_load(&Vjx[VEC_SIZE]);
  const vector vjy = vector_load(Vjy);
  const vector vjy2 = vector_load(&Vjy[VEC_SIZE]);
  const vector vjz = vector_load(Vjz);
  const vector vjz2 = vector_load(&Vjz[VEC_SIZE]);
  const vector dx = vector_load(Dx);
  const vector dx2 = vector_load(&Dx[VEC_SIZE]);
  const vector dy = vector_load(Dy);
  const vector dy2 = vector_load(&Dy[VEC_SIZE]);
  const vector dz = vector_load(Dz);
  const vector dz2 = vector_load(&Dz[VEC_SIZE]);
291
292

  /* Get the radius and inverse radius. */
293
294
  const vector r2 = vector_load(R2);
  const vector r2_2 = vector_load(&R2[VEC_SIZE]);
295
296
  ri = vec_reciprocal_sqrt(r2);
  ri2 = vec_reciprocal_sqrt(r2_2);
297
298
299
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri2.v);

300
301
  ui.v = vec_mul(r.v, hi_inv.v);
  ui2.v = vec_mul(r_2.v, hi_inv.v);
302

James Willis's avatar
James Willis committed
303
  /* Calculate the kernel for two particles. */
304
  kernel_deval_2_vec(&ui, &wi, &wi_dx, &ui2, &wi2, &wi_dx2);
305
306
307
308
309
310
311
312
313
314
315

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx2.v = vec_sub(vix.v, vjx2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy2.v = vec_sub(viy.v, vjy2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz2.v = vec_sub(viz.v, vjz2.v);

  /* Compute dv dot r */
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
316
317
  dvdr2.v =
      vec_fma(dvx2.v, dx2.v, vec_fma(dvy2.v, dy2.v, vec_mul(dvz2.v, dz2.v)));
318
319
320
321
  dvdr.v = vec_mul(dvdr.v, ri.v);
  dvdr2.v = vec_mul(dvdr2.v, ri2.v);

  /* Compute dv cross r */
James Willis's avatar
James Willis committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  curlvrx.v =
      vec_fma(dvy.v, dz.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz.v, dy.v)));
  curlvrx2.v =
      vec_fma(dvy2.v, dz2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvz2.v, dy2.v)));
  curlvry.v =
      vec_fma(dvz.v, dx.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx.v, dz.v)));
  curlvry2.v =
      vec_fma(dvz2.v, dx2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvx2.v, dz2.v)));
  curlvrz.v =
      vec_fma(dvx.v, dy.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy.v, dx.v)));
  curlvrz2.v =
      vec_fma(dvx2.v, dy2.v, vec_mul(vec_set1(-1.0f), vec_mul(dvy2.v, dx2.v)));
  curlvrx.v = vec_mul(curlvrx.v, ri.v);
  curlvrx2.v = vec_mul(curlvrx2.v, ri2.v);
  curlvry.v = vec_mul(curlvry.v, ri.v);
  curlvry2.v = vec_mul(curlvry2.v, ri2.v);
  curlvrz.v = vec_mul(curlvrz.v, ri.v);
  curlvrz2.v = vec_mul(curlvrz2.v, ri2.v);

341
342
  vector wcount_dh_update, wcount_dh_update2;
  wcount_dh_update.v =
James Willis's avatar
James Willis committed
343
      vec_fma(vec_set1(hydro_dimension), wi.v, vec_mul(ui.v, wi_dx.v));
344
  wcount_dh_update2.v =
James Willis's avatar
James Willis committed
345
      vec_fma(vec_set1(hydro_dimension), wi2.v, vec_mul(ui2.v, wi_dx2.v));
346

James Willis's avatar
James Willis committed
347
  /* Mask updates to intermediate vector sums for particle pi. */
348
  /* Mask only when needed. */
James Willis's avatar
James Willis committed
349
  if (mask_cond) {
350
351
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj.v, wi.v), mask);
    rhoSum->v = vec_mask_add(rhoSum->v, vec_mul(mj2.v, wi2.v), mask2);
James Willis's avatar
James Willis committed
352
    rho_dhSum->v =
353
        vec_mask_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v), mask);
James Willis's avatar
James Willis committed
354
    rho_dhSum->v =
355
        vec_mask_sub(rho_dhSum->v, vec_mul(mj2.v, wcount_dh_update2.v), mask2);
356
357
    wcountSum->v = vec_mask_add(wcountSum->v, wi.v, mask);
    wcountSum->v = vec_mask_add(wcountSum->v, wi2.v, mask2);
358
359
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update.v, mask);
    wcount_dhSum->v = vec_mask_sub(wcount_dhSum->v, wcount_dh_update2.v, mask2);
James Willis's avatar
James Willis committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    div_vSum->v = vec_mask_sub(div_vSum->v,
                               vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)), mask);
    div_vSum->v = vec_mask_sub(
        div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)), mask2);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)), mask);
    curlvxSum->v = vec_mask_add(
        curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)), mask2);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)), mask);
    curlvySum->v = vec_mask_add(
        curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)), mask2);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)), mask);
    curlvzSum->v = vec_mask_add(
        curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)), mask2);
  } else {
377
378
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj.v, wi.v));
    rhoSum->v = vec_add(rhoSum->v, vec_mul(mj2.v, wi2.v));
379
380
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(mj.v, wcount_dh_update.v));
    rho_dhSum->v = vec_sub(rho_dhSum->v, vec_mul(mj2.v, wcount_dh_update2.v));
381
382
    wcountSum->v = vec_add(wcountSum->v, wi.v);
    wcountSum->v = vec_add(wcountSum->v, wi2.v);
383
384
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, wcount_dh_update.v);
    wcount_dhSum->v = vec_sub(wcount_dhSum->v, wcount_dh_update2.v);
385
    div_vSum->v = vec_sub(div_vSum->v, vec_mul(mj.v, vec_mul(dvdr.v, wi_dx.v)));
James Willis's avatar
James Willis committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    div_vSum->v =
        vec_sub(div_vSum->v, vec_mul(mj2.v, vec_mul(dvdr2.v, wi_dx2.v)));
    curlvxSum->v =
        vec_add(curlvxSum->v, vec_mul(mj.v, vec_mul(curlvrx.v, wi_dx.v)));
    curlvxSum->v =
        vec_add(curlvxSum->v, vec_mul(mj2.v, vec_mul(curlvrx2.v, wi_dx2.v)));
    curlvySum->v =
        vec_add(curlvySum->v, vec_mul(mj.v, vec_mul(curlvry.v, wi_dx.v)));
    curlvySum->v =
        vec_add(curlvySum->v, vec_mul(mj2.v, vec_mul(curlvry2.v, wi_dx2.v)));
    curlvzSum->v =
        vec_add(curlvzSum->v, vec_mul(mj.v, vec_mul(curlvrz.v, wi_dx.v)));
    curlvzSum->v =
        vec_add(curlvzSum->v, vec_mul(mj2.v, vec_mul(curlvrz2.v, wi_dx2.v)));
400
  }
401
}
James Willis's avatar
James Willis committed
402
#endif
403

404
405
406
/**
 * @brief Force loop
 */
407
408
409
__attribute__((always_inline)) INLINE static void runner_iact_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

410
411
412
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
413

414
415
416
417
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
418
  const float mi = pi->mass;
419
420
421
422
423
424
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
425
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
426
427
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
428
  const float wi_dr = hid_inv * wi_dx;
429
430
431

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
432
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
433
434
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
435
  const float wj_dr = hjd_inv * wj_dx;
436

437
438
439
440
441
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
442
443
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
444
445

  /* Compute sound speeds */
446
447
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
448

449
  /* Compute dv dot r. */
450
451
452
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
453

454
  /* Balsara term */
455
456
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
Matthieu Schaller's avatar
Matthieu Schaller committed
457

458
  /* Are the particles moving towards each others ? */
459
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
460
461
462
463
464
465
466
467
468
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
469
470

  /* Now, convolve with the kernel */
471
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
472
  const float sph_term =
473
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
474
475
476
477
478

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;

  /* Use the force Luke ! */
479
480
481
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
482

483
484
485
  pj->a_hydro[0] += mi * acc * dx[0];
  pj->a_hydro[1] += mi * acc * dx[1];
  pj->a_hydro[2] += mi * acc * dx[2];
486

487
  /* Get the time derivative for h. */
488
489
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
  pj->force.h_dt -= mi * dvdr * r_inv / rhoi * wj_dr;
490

491
  /* Update the signal velocity. */
492
493
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
  pj->force.v_sig = (pj->force.v_sig > v_sig) ? pj->force.v_sig : v_sig;
494

495
  /* Change in entropy */
496
497
  pi->entropy_dt += mj * visc_term * dvdr;
  pj->entropy_dt += mi * visc_term * dvdr;
498

499
#ifdef DEBUG_INTERACTIONS_SPH
500
  /* Update ngb counters */
501
  if (pi->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
502
    pi->ids_ngbs_force[pi->num_ngb_force] = pj->id;
James Willis's avatar
James Willis committed
503
  ++pi->num_ngb_force;
504

505
  if (pj->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
506
    pj->ids_ngbs_force[pj->num_ngb_force] = pi->id;
James Willis's avatar
James Willis committed
507
  ++pj->num_ngb_force;
508
#endif
509
}
510
511
512
513

/**
 * @brief Force loop (non-symmetric version)
 */
514
515
516
__attribute__((always_inline)) INLINE static void runner_iact_nonsym_force(
    float r2, float *dx, float hi, float hj, struct part *pi, struct part *pj) {

517
518
519
  float wi, wj, wi_dx, wj_dx;

  const float fac_mu = 1.f; /* Will change with cosmological integration */
520

521
522
523
524
  const float r = sqrtf(r2);
  const float r_inv = 1.0f / r;

  /* Get some values in local variables. */
525
  // const float mi = pi->mass;
526
527
528
529
530
531
  const float mj = pj->mass;
  const float rhoi = pi->rho;
  const float rhoj = pj->rho;

  /* Get the kernel for hi. */
  const float hi_inv = 1.0f / hi;
532
  const float hid_inv = pow_dimension_plus_one(hi_inv); /* 1/h^(d+1) */
533
534
  const float ui = r * hi_inv;
  kernel_deval(ui, &wi, &wi_dx);
535
  const float wi_dr = hid_inv * wi_dx;
536
537
538

  /* Get the kernel for hj. */
  const float hj_inv = 1.0f / hj;
539
  const float hjd_inv = pow_dimension_plus_one(hj_inv); /* 1/h^(d+1) */
540
541
  const float xj = r * hj_inv;
  kernel_deval(xj, &wj, &wj_dx);
542
  const float wj_dr = hjd_inv * wj_dx;
543

544
545
546
547
548
  /* Compute h-gradient terms */
  const float f_i = pi->force.f;
  const float f_j = pj->force.f;

  /* Compute pressure terms */
549
550
  const float P_over_rho2_i = pi->force.P_over_rho2;
  const float P_over_rho2_j = pj->force.P_over_rho2;
551
552

  /* Compute sound speeds */
553
554
  const float ci = pi->force.soundspeed;
  const float cj = pj->force.soundspeed;
555

556
  /* Compute dv dot r. */
557
558
559
  const float dvdr = (pi->v[0] - pj->v[0]) * dx[0] +
                     (pi->v[1] - pj->v[1]) * dx[1] +
                     (pi->v[2] - pj->v[2]) * dx[2];
560

561
  /* Balsara term */
562
563
  const float balsara_i = pi->force.balsara;
  const float balsara_j = pj->force.balsara;
564
565

  /* Are the particles moving towards each others ? */
566
  const float omega_ij = (dvdr < 0.f) ? dvdr : 0.f;
567
568
569
570
571
572
573
574
575
  const float mu_ij = fac_mu * r_inv * omega_ij; /* This is 0 or negative */

  /* Signal velocity */
  const float v_sig = ci + cj - 3.f * mu_ij;

  /* Now construct the full viscosity term */
  const float rho_ij = 0.5f * (rhoi + rhoj);
  const float visc = -0.25f * const_viscosity_alpha * v_sig * mu_ij *
                     (balsara_i + balsara_j) / rho_ij;
576
577

  /* Now, convolve with the kernel */
578
  const float visc_term = 0.5f * visc * (wi_dr + wj_dr) * r_inv;
579
  const float sph_term =
580
      (f_i * P_over_rho2_i * wi_dr + f_j * P_over_rho2_j * wj_dr) * r_inv;
581
582
583

  /* Eventually got the acceleration */
  const float acc = visc_term + sph_term;
584

585
  /* Use the force Luke ! */
586
587
588
  pi->a_hydro[0] -= mj * acc * dx[0];
  pi->a_hydro[1] -= mj * acc * dx[1];
  pi->a_hydro[2] -= mj * acc * dx[2];
589

590
  /* Get the time derivative for h. */
591
  pi->force.h_dt -= mj * dvdr * r_inv / rhoj * wi_dr;
592

593
  /* Update the signal velocity. */
594
  pi->force.v_sig = (pi->force.v_sig > v_sig) ? pi->force.v_sig : v_sig;
595

596
  /* Change in entropy */
597
  pi->entropy_dt += mj * visc_term * dvdr;
598

599
#ifdef DEBUG_INTERACTIONS_SPH
600
  /* Update ngb counters */
601
  if (pi->num_ngb_force < MAX_NUM_OF_NEIGHBOURS)
602
    pi->ids_ngbs_force[pi->num_ngb_force] = pj->id;
James Willis's avatar
James Willis committed
603
  ++pi->num_ngb_force;
604
#endif
605
}
606

607
#ifdef WITH_VECTORIZATION
James Willis's avatar
James Willis committed
608
609
static const vector const_viscosity_alpha_fac =
    FILL_VEC(-0.25f * const_viscosity_alpha);
610

James Willis's avatar
James Willis committed
611
612
613
614
/**
 * @brief Force interaction computed using 1 vector
 * (non-symmetric vectorized version).
 */
James Willis's avatar
James Willis committed
615
616
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_1_vec_force(
617
    vector *r2, vector *dx, vector *dy, vector *dz, vector vix, vector viy,
James Willis's avatar
James Willis committed
618
619
620
    vector viz, vector pirho, vector grad_hi, vector piPOrho2, vector balsara_i,
    vector ci, float *Vjx, float *Vjy, float *Vjz, float *Pjrho, float *Grad_hj,
    float *PjPOrho2, float *Balsara_j, float *Cj, float *Mj, vector hi_inv,
621
    vector hj_inv, vector *a_hydro_xSum, vector *a_hydro_ySum,
James Willis's avatar
James Willis committed
622
623
    vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum,
    vector *entropy_dtSum, mask_t mask) {
624
625
626

#ifdef WITH_VECTORIZATION

627
  vector r, ri;
628
  vector dvx, dvy, dvz;
629
630
  vector xi, xj;
  vector hid_inv, hjd_inv;
631
  vector wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
632
633
634
  vector piax, piay, piaz;
  vector pih_dt;
  vector v_sig;
635
  vector omega_ij, mu_ij, balsara;
636
637
638
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;

  /* Fill vectors. */
639
640
641
642
643
644
645
646
647
  const vector vjx = vector_load(Vjx);
  const vector vjy = vector_load(Vjy);
  const vector vjz = vector_load(Vjz);
  const vector mj = vector_load(Mj);
  const vector pjrho = vector_load(Pjrho);
  const vector grad_hj = vector_load(Grad_hj);
  const vector pjPOrho2 = vector_load(PjPOrho2);
  const vector balsara_j = vector_load(Balsara_j);
  const vector cj = vector_load(Cj);
648

649
650
  const vector fac_mu =
      vector_set1(1.f); /* Will change with cosmological integration */
651

James Willis's avatar
James Willis committed
652
  /* Load stuff. */
653
  balsara.v = vec_add(balsara_i.v, balsara_j.v);
654
655

  /* Get the radius and inverse radius. */
656
  ri = vec_reciprocal_sqrt(*r2);
657
  r.v = vec_mul(r2->v, ri.v);
658
659

  /* Get the kernel for hi. */
660
  hid_inv = pow_dimension_plus_one_vec(hi_inv);
661
  xi.v = vec_mul(r.v, hi_inv.v);
662
  kernel_eval_dWdx_force_vec(&xi, &wi_dx);
663
  wi_dr.v = vec_mul(hid_inv.v, wi_dx.v);
664
665
666

  /* Get the kernel for hj. */
  hjd_inv = pow_dimension_plus_one_vec(hj_inv);
667
  xj.v = vec_mul(r.v, hj_inv.v);
James Willis's avatar
James Willis committed
668

669
  /* Calculate the kernel. */
James Willis's avatar
James Willis committed
670
  kernel_eval_dWdx_force_vec(&xj, &wj_dx);
James Willis's avatar
James Willis committed
671

672
673
674
675
676
677
  wj_dr.v = vec_mul(hjd_inv.v, wj_dx.v);

  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvz.v = vec_sub(viz.v, vjz.v);
678
679

  /* Compute dv dot r. */
680
  dvdr.v = vec_fma(dvx.v, dx->v, vec_fma(dvy.v, dy->v, vec_mul(dvz.v, dz->v)));
681
682
683

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
684
  omega_ij.v = vec_fmin(dvdr.v, vec_setzero());
James Willis's avatar
James Willis committed
685
686
  mu_ij.v =
      vec_mul(fac_mu.v, vec_mul(ri.v, omega_ij.v)); /* This is 0 or negative */
687
688

  /* Compute signal velocity */
689
  v_sig.v = vec_fnma(vec_set1(3.f), mu_ij.v, vec_add(ci.v, cj.v));
690
691

  /* Now construct the full viscosity term */
692
  rho_ij.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho.v));
James Willis's avatar
James Willis committed
693
694
695
  visc.v = vec_div(vec_mul(const_viscosity_alpha_fac.v,
                           vec_mul(v_sig.v, vec_mul(mu_ij.v, balsara.v))),
                   rho_ij.v);
696
697

  /* Now, convolve with the kernel */
James Willis's avatar
James Willis committed
698
699
700
  visc_term.v =
      vec_mul(vec_set1(0.5f),
              vec_mul(visc.v, vec_mul(vec_add(wi_dr.v, wj_dr.v), ri.v)));
James Willis's avatar
James Willis committed
701

702
  sph_term.v =
James Willis's avatar
James Willis committed
703
704
705
      vec_mul(vec_fma(vec_mul(grad_hi.v, piPOrho2.v), wi_dr.v,
                      vec_mul(grad_hj.v, vec_mul(pjPOrho2.v, wj_dr.v))),
              ri.v);
James Willis's avatar
James Willis committed
706

707
  /* Eventually get the acceleration */
708
  acc.v = vec_add(visc_term.v, sph_term.v);
709
710

  /* Use the force, Luke! */
711
712
713
  piax.v = vec_mul(mj.v, vec_mul(dx->v, acc.v));
  piay.v = vec_mul(mj.v, vec_mul(dy->v, acc.v));
  piaz.v = vec_mul(mj.v, vec_mul(dz->v, acc.v));
714
715

  /* Get the time derivative for h. */
James Willis's avatar
James Willis committed
716
717
  pih_dt.v =
      vec_div(vec_mul(mj.v, vec_mul(dvdr.v, vec_mul(ri.v, wi_dr.v))), pjrho.v);
718
719

  /* Change in entropy */
720
  entropy_dt.v = vec_mul(mj.v, vec_mul(visc_term.v, dvdr.v));
721

722
  /* Store the forces back on the particles. */
723
724
725
726
  a_hydro_xSum->v = vec_mask_sub(a_hydro_xSum->v, piax.v, mask);
  a_hydro_ySum->v = vec_mask_sub(a_hydro_ySum->v, piay.v, mask);
  a_hydro_zSum->v = vec_mask_sub(a_hydro_zSum->v, piaz.v, mask);
  h_dtSum->v = vec_mask_sub(h_dtSum->v, pih_dt.v, mask);
727
  v_sigSum->v = vec_fmax(v_sigSum->v, vec_and_mask(v_sig.v, mask));
728
  entropy_dtSum->v = vec_mask_add(entropy_dtSum->v, entropy_dt.v, mask);
729
730
731
732
733
734
735
736
737
738

#else

  error(
      "The Gadget2 serial version of runner_iact_nonsym_force was called when "
      "the vectorised version should have been used.");

#endif
}

James Willis's avatar
James Willis committed
739
740
741
742
/**
 * @brief Force interaction computed using 2 interleaved vectors
 * (non-symmetric vectorized version).
 */
James Willis's avatar
James Willis committed
743
744
__attribute__((always_inline)) INLINE static void
runner_iact_nonsym_2_vec_force(
745
    float *R2, float *Dx, float *Dy, float *Dz, vector vix, vector viy,
James Willis's avatar
James Willis committed
746
747
748
749
750
751
    vector viz, vector pirho, vector grad_hi, vector piPOrho2, vector balsara_i,
    vector ci, float *Vjx, float *Vjy, float *Vjz, float *Pjrho, float *Grad_hj,
    float *PjPOrho2, float *Balsara_j, float *Cj, float *Mj, vector hi_inv,
    float *Hj_inv, vector *a_hydro_xSum, vector *a_hydro_ySum,
    vector *a_hydro_zSum, vector *h_dtSum, vector *v_sigSum,
    vector *entropy_dtSum, mask_t mask, mask_t mask_2, short mask_cond) {
752
753
754

#ifdef WITH_VECTORIZATION

755
756
  vector r, ri;
  vector dvx, dvy, dvz;
757
  vector ui, uj;
758
  vector hid_inv, hjd_inv;
759
  vector wi_dx, wj_dx, wi_dr, wj_dr, dvdr;
760
761
762
  vector piax, piay, piaz;
  vector pih_dt;
  vector v_sig;
763
  vector omega_ij, mu_ij, balsara;
764
765
  vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt;

766
767
  vector r_2, ri_2;
  vector dvx_2, dvy_2, dvz_2;
768
  vector ui_2, uj_2;
769
  vector hjd_inv_2;
770
  vector wi_dx_2, wj_dx_2, wi_dr_2, wj_dr_2, dvdr_2;
771
772
773
774
775
776
777
  vector piax_2, piay_2, piaz_2;
  vector pih_dt_2;
  vector v_sig_2;
  vector omega_ij_2, mu_ij_2, balsara_2;
  vector rho_ij_2, visc_2, visc_term_2, sph_term_2, acc_2, entropy_dt_2;

  /* Fill vectors. */
778
779
780
781
782
783
784
785
786
787
788
789
790
791
  const vector mj = vector_load(Mj);
  const vector mj_2 = vector_load(&Mj[VEC_SIZE]);
  const vector vjx = vector_load(Vjx);
  const vector vjx_2 = vector_load(&Vjx[VEC_SIZE]);
  const vector vjy = vector_load(Vjy);
  const vector vjy_2 = vector_load(&Vjy[VEC_SIZE]);
  const vector vjz = vector_load(Vjz);
  const vector vjz_2 = vector_load(&Vjz[VEC_SIZE]);
  const vector dx = vector_load(Dx);
  const vector dx_2 = vector_load(&Dx[VEC_SIZE]);
  const vector dy = vector_load(Dy);
  const vector dy_2 = vector_load(&Dy[VEC_SIZE]);
  const vector dz = vector_load(Dz);
  const vector dz_2 = vector_load(&Dz[VEC_SIZE]);
James Willis's avatar
James Willis committed
792

793
  /* Get the radius and inverse radius. */
794
795
  const vector r2 = vector_load(R2);
  const vector r2_2 = vector_load(&R2[VEC_SIZE]);
796
797
798
799
  ri = vec_reciprocal_sqrt(r2);
  ri_2 = vec_reciprocal_sqrt(r2_2);
  r.v = vec_mul(r2.v, ri.v);
  r_2.v = vec_mul(r2_2.v, ri_2.v);
800

801
  /* Get remaining properties. */
802
803
804
805
806
807
808
809
810
811
812
813
  const vector pjrho = vector_load(Pjrho);
  const vector pjrho_2 = vector_load(&Pjrho[VEC_SIZE]);
  const vector grad_hj = vector_load(Grad_hj);
  const vector grad_hj_2 = vector_load(&Grad_hj[VEC_SIZE]);
  const vector pjPOrho2 = vector_load(PjPOrho2);
  const vector pjPOrho2_2 = vector_load(&PjPOrho2[VEC_SIZE]);
  const vector balsara_j = vector_load(Balsara_j);
  const vector balsara_j_2 = vector_load(&Balsara_j[VEC_SIZE]);
  const vector cj = vector_load(Cj);
  const vector cj_2 = vector_load(&Cj[VEC_SIZE]);
  const vector hj_inv = vector_load(Hj_inv);
  const vector hj_inv_2 = vector_load(&Hj_inv[VEC_SIZE]);
814

815
816
  const vector fac_mu =
      vector_set1(1.f); /* Will change with cosmological integration */
817

818
819
820
  /* Find the balsara switch. */
  balsara.v = vec_add(balsara_i.v, balsara_j.v);
  balsara_2.v = vec_add(balsara_i.v, balsara_j_2.v);
821
822

  /* Get the kernel for hi. */
823
  hid_inv = pow_dimension_plus_one_vec(hi_inv);
824
825
826
827
828
829
  ui.v = vec_mul(r.v, hi_inv.v);
  ui_2.v = vec_mul(r_2.v, hi_inv.v);
  kernel_eval_dWdx_force_vec(&ui, &wi_dx);
  kernel_eval_dWdx_force_vec(&ui_2, &wi_dx_2);
  wi_dr.v = vec_mul(hid_inv.v, wi_dx.v);
  wi_dr_2.v = vec_mul(hid_inv.v, wi_dx_2.v);
830
831
832
833

  /* Get the kernel for hj. */
  hjd_inv = pow_dimension_plus_one_vec(hj_inv);
  hjd_inv_2 = pow_dimension_plus_one_vec(hj_inv_2);
834
835
  uj.v = vec_mul(r.v, hj_inv.v);
  uj_2.v = vec_mul(r_2.v, hj_inv_2.v);
James Willis's avatar
James Willis committed
836

837
  /* Calculate the kernel for two particles. */
838
839
  kernel_eval_dWdx_force_vec(&uj, &wj_dx);
  kernel_eval_dWdx_force_vec(&uj_2, &wj_dx_2);
James Willis's avatar
James Willis committed
840

841
842
  wj_dr.v = vec_mul(hjd_inv.v, wj_dx.v);
  wj_dr_2.v = vec_mul(hjd_inv_2.v, wj_dx_2.v);
843

844
845
846
847
848
849
850
  /* Compute dv. */
  dvx.v = vec_sub(vix.v, vjx.v);
  dvx_2.v = vec_sub(vix.v, vjx_2.v);
  dvy.v = vec_sub(viy.v, vjy.v);
  dvy_2.v = vec_sub(viy.v, vjy_2.v);
  dvz.v = vec_sub(viz.v, vjz.v);
  dvz_2.v = vec_sub(viz.v, vjz_2.v);
851
852

  /* Compute dv dot r. */
853
  dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v)));
James Willis's avatar
James Willis committed
854
855
  dvdr_2.v = vec_fma(dvx_2.v, dx_2.v,
                     vec_fma(dvy_2.v, dy_2.v, vec_mul(dvz_2.v, dz_2.v)));
856
857
858
859
860

  /* Compute the relative velocity. (This is 0 if the particles move away from
   * each other and negative otherwise) */
  omega_ij.v = vec_fmin(dvdr.v, vec_setzero());
  omega_ij_2.v = vec_fmin(dvdr_2.v, vec_setzero());
James Willis's avatar
James Willis committed
861
862
863
864
  mu_ij.v =
      vec_mul(fac_mu.v, vec_mul(ri.v, omega_ij.v)); /* This is 0 or negative */
  mu_ij_2.v = vec_mul(
      fac_mu.v, vec_mul(ri_2.v, omega_ij_2.v)); /* This is 0 or negative */
865
866

  /* Compute signal velocity */
867
868
  v_sig.v = vec_fnma(vec_set1(3.f), mu_ij.v, vec_add(ci.v, cj.v));
  v_sig_2.v = vec_fnma(vec_set1(3.f), mu_ij_2.v, vec_add(ci.v, cj_2.v));
869
870

  /* Now construct the full viscosity term */
871
872
873
  rho_ij.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho.v));
  rho_ij_2.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho_2.v));

James Willis's avatar
James Willis committed
874
875
876
877
878
879
880
  visc.v = vec_div(vec_mul(const_viscosity_alpha_fac.v,
                           vec_mul(v_sig.v, vec_mul(mu_ij.v, balsara.v))),
                   rho_ij.v);
  visc_2.v =
      vec_div(vec_mul(const_viscosity_alpha_fac.v,
                      vec_mul(v_sig_2.v, vec_mul(mu_ij_2.v, balsara_2.v))),
              rho_ij_2.v);
881
882

  /* Now, convolve with the kernel */
James Willis's avatar
James Willis committed
883
884
885
886
887
888
889
  visc_term.v =
      vec_mul(vec_set1(0.5f),
              vec_mul(visc.v, vec_mul(vec_add(wi_dr.v, wj_dr.v), ri.v)));
  visc_term_2.v = vec_mul(
      vec_set1(0.5f),
      vec_mul(visc_2.v, vec_mul(vec_add(wi_dr_2.v, wj_dr_2.v), ri_2.v)));

890
891
892
  vector grad_hi_mul_piPOrho2;
  grad_hi_mul_piPOrho2.v = vec_mul(grad_hi.v, piPOrho2.v);

893
  sph_term.v =
James Willis's avatar
James Willis committed
894
895
896
897
898
899
900
      vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr.v,
                      vec_mul(grad_hj.v, vec_mul(pjPOrho2.v, wj_dr.v))),
              ri.v);
  sph_term_2.v =
      vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr_2.v,
                      vec_mul(grad_hj_2.v, vec_mul(pjPOrho2_2.v, wj_dr_2.v))),
              ri_2.v);
901
902

  /* Eventually get the acceleration */
903
904
  acc.v = vec_add(visc_term.v, sph_term.v);
  acc_2.v = vec_add(visc_term_2.v, sph_term_2.v);
905
906

  /* Use the force, Luke! */
907
908
909
910
911
912
  piax.v = vec_mul(mj.v, vec_mul(dx.v, acc.v));
  piax_2.v = vec_mul(mj_2.v, vec_mul(dx_2.v, acc_2.v));
  piay.v = vec_mul(mj.v, vec_mul(dy.v, acc.v));
  piay_2.v = vec_mul(mj_2.v, vec_mul(dy_2.v, acc_2.v));
  piaz.v = vec_mul(mj.v, vec_mul(dz.v, acc.v));
  piaz_2.v = vec_mul(mj_2.v, vec_mul(dz_2.v, acc_2.v));
913
914

  /* Get the time derivative for h. */
James Willis's avatar
James Willis committed
915
916
917