space.c 38.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161
162
163

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
164
  ticks tic = getticks();
165
166
167
168
169
170

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
171
    }
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
186
      error("Failed to aggregate the rebuild flag across nodes.");
187
188
189
    h_max = buff;
  }
#endif
190
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
258
        }
259
260

    /* Be verbose about the change. */
261
262
263
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
264
265
266
    fflush(stdout);

  } /* re-build upper-level cells? */
267
268
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
290
      s->cells[k].super = &s->cells[k];
291
    }
292
293
    s->maxdepth = 0;
  }
294
295
296
297

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
298
}
299
300
301
302
303
304

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
305
 * @param verbose Print messages to stdout or not
306
307
 *
 */
308

309
void space_rebuild(struct space *s, double cell_max, int verbose) {
310

311
  ticks tic = getticks();
312
313
314
315
316

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
317
  space_regrid(s, cell_max, verbose);
318

319
320
321
322
323
324
  int nr_parts = s->nr_parts;
  int nr_gparts = s->nr_gparts;
  struct cell *restrict cells = s->cells;

  double ih[3], dim[3];
  int cdim[3];
325
326
327
328
329
330
331
332
333
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
334
335
336
337
338
339
340
341
342
343

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
  size_t *ind;
  if ((ind = (size_t *)malloc(sizeof(size_t) * ind_size)) == NULL)
    error("Failed to allocate temporary particle indices.");
  for (int k = 0; k < nr_parts; k++) {
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
344
345
346
347
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
348
    ind[k] =
349
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
350
    cells[ind[k]].count++;
351
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
352
353
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
354
355
356

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
357
358
  const int nodeID = s->e->nodeID;
  for (int k = 0; k < nr_parts; k++)
359
360
361
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
362
363
364
365
366
367
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
368
369
370
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
371
372
    }

373
374
375
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
376
377
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
378
379

  /* Re-allocate the index array if needed.. */
380
  if (s->nr_parts > ind_size) {
381
382
    size_t *ind_new;
    if ((ind_new = (size_t *)malloc(sizeof(size_t) * s->nr_parts)) == NULL)
383
      error("Failed to allocate temporary particle indices.");
384
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
385
386
    free(ind);
    ind = ind_new;
387
388
389
  }

  /* Assign each particle to its cell. */
390
391
  for (int k = nr_parts; k < s->nr_parts; k++) {
    struct part *p = &s->parts[k];
392
    ind[k] =
393
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
394
395
396
397
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
398
  }
399
  nr_parts = s->nr_parts;
400
401
402
#endif

  /* Sort the parts according to their cells. */
403
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
404
405

  /* Re-link the gparts. */
406
  for (int k = 0; k < nr_parts; k++)
407
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
408

409
  /* Verify space_sort_struct. */
410
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
411
      if ( ind[k-1] > ind[k] ) {
412
413
          error( "Sort failed!" );
          }
414
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
415
416
417
418
419
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
420
  free(ind);
421
422
423

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
424
425
426
427
428
  const size_t gind_size = s->size_gparts;
  size_t *gind;
  if ((gind = (size_t *)malloc(sizeof(size_t) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
429
    struct gpart *gp = &s->gparts[k];
430
    for (int j = 0; j < 3; j++)
431
432
433
434
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
435
    gind[k] =
436
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
437
    cells[gind[k]].gcount++;
438
  }
439
440
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit());
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#ifdef WITH_MPI

  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].gcount -= 1;
      nr_gparts -= 1;
      struct gpart tp = s->gparts[k];
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
      int t = ind[k];
      ind[k] = ind[nr_gparts];
      ind[nr_gparts] = t;
    }

  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
Matthieu Schaller's avatar
Matthieu Schaller committed
459
  // s->nr_gparts =
460
461
  //    nr_gparts + engine_exchange_strays(s->e, nr_gparts, &ind[nr_gparts],
  //                                        s->nr_gparts - nr_gparts);
Matthieu Schaller's avatar
Matthieu Schaller committed
462
  if (nr_gparts > 0)
463
464
    error("Need to implement the exchange of strays for the gparts");

465
466
467
468
469
470
471
472
473
474
475
  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
    size_t *gind_new;
    if ((gind_new = (size_t *)malloc(sizeof(size_t) * s->nr_gparts)) == NULL)
      error("Failed to allocate temporary g-particle indices.");
    memcpy(gind_new, gind, sizeof(size_t) * nr_gparts);
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
476
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
477
478
479
480
481
482
483
484
485
486
487
    struct gpart *p = &s->gparts[k];
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
    cells[gind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;

#endif
488
489

  /* Sort the parts according to their cells. */
490
  space_gparts_sort(s->gparts, gind, nr_gparts, 0, s->nr_cells - 1);
491
492

  /* Re-link the parts. */
493
  for (int k = 0; k < nr_gparts; k++)
494
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
495
496

  /* We no longer need the indices as of here. */
497
  free(gind);
498
499
500

  /* Hook the cells up to the parts. */
  // tic = getticks();
501
502
503
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
504
505
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
506
507
508
509
510
511
512
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
513
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
514
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
515
516
517

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
537
538
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
539
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
540

541
542
543
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
544
}
545

546
/**
547
548
 * @brief Sort the particles and condensed particles according to the given
 *indices.
549
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
550
 * @param s The #space.
551
552
553
554
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
555
 * @param verbose Are we talkative ?
556
 */
557

558
void space_parts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
559
560
561
562
563
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
564
565
566
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
567
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
568
569
570
571
572
573
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

574
  /* Add the first interval. */
575
576
577
578
579
580
581
582
583
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

584
  /* Launch the sorting tasks. */
585
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
586
587

  /* Verify space_sort_struct. */
588
  /* for (int i = 1; i < N; i++)
589
    if (ind[i - 1] > ind[i])
590
591
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
592
593
            ind[i], min, max);
  message("Sorting succeeded."); */
594

595
  /* Clean up. */
596
  free(space_sort_struct.stack);
597
598
599
600

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
601
}
602

603
void space_do_parts_sort() {
604

605
  /* Pointers to the sorting data. */
606
  size_t *ind = space_sort_struct.ind;
607
608
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
609

610
  /* Main loop. */
611
  while (space_sort_struct.waiting) {
612

613
    /* Grab an interval off the queue. */
614
615
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
616

617
    /* Wait for the entry to be ready, or for the sorting do be done. */
618
619
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
620

621
    /* Get the stack entry. */
622
623
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
624
625
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
626
    space_sort_struct.stack[qid].ready = 0;
627

628
629
    /* Loop over sub-intervals. */
    while (1) {
630

631
      /* Bring beer. */
632
      const int pivot = (min + max) / 2;
633
634
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
635
636

      /* One pass of QuickSort's partitioning. */
637
638
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
639
640
641
642
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
643
          size_t temp_i = ind[ii];
644
645
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
646
          struct part temp_p = parts[ii];
647
648
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
649
          struct xpart temp_xp = xparts[ii];
650
651
652
653
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
654

655
      /* Verify space_sort_struct. */
656
657
658
659
660
661
662
663
664
665
666
667
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
668
669
670
671
672
673

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
674
675
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
676
677
          while (space_sort_struct.stack[qid].ready)
            ;
678
679
680
681
682
683
684
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
685
          space_sort_struct.stack[qid].ready = 1;
686
        }
687

688
689
690
691
692
693
694
695
696
697
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
698
        if (pivot + 1 < max) {
699
700
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
701
702
          while (space_sort_struct.stack[qid].ready)
            ;
703
704
705
706
707
708
709
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
710
          space_sort_struct.stack[qid].ready = 1;
711
        }
712

713
714
715
716
717
718
719
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
720

721
722
    } /* loop over sub-intervals. */

723
    atomic_dec(&space_sort_struct.waiting);
724
725

  } /* main loop. */
726
727
}

728
void space_gparts_sort(struct gpart *gparts, size_t *ind, size_t N, int min,
729
                       int max) {
730
731

  struct qstack {
732
733
    volatile size_t i, j;
    volatile int min, max;
734
735
736
737
738
739
740
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
741
  ptrdiff_t i, ii, j, jj, temp_i;
742
  int qid;
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

764
765
  /* Main loop. */
  while (waiting > 0) {
766

767
768
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
769

770
771
772
773
774
775
776
777
778
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
798

799
      /* Verify space_sort_struct. */
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
826

827
828
829
830
831
832
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
833

834
835
836
      } else {

        /* Recurse on the right? */
837
        if (pivot + 1 < max) {
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
860

861
  /* Verify space_sort_struct. */
862
863
864
865
866
867
868
869
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
870

Pedro Gonnet's avatar
Pedro Gonnet committed
871
/**
872
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
873
874
 */

875
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
876

877
878
879
880
881
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
882

883
884
885
/**
 * @brief Map a function to all particles in a cell recursively.
 *
886
 * @param c The #cell we are working in.
887
888
889
890
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
891
892
893
894
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
895
896
897
898
899
900

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
901

902
903
904
905
906
907
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
908
/**
909
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
910
911
 *
 * @param s The #space we are working in.
912
913
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
914
915
 */

916
917
918
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
919

920
921
  int cid = 0;

922
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
923
924
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
925
}
926

927
928
929
930
931
932
933
934
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
935
936
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
958
959
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
960
961
962
963
964
965
966
967

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

968
969
970
/**
 * @brief Map a function to all particles in a cell recursively.
 *
971
 * @param c The #cell we are working in.
972
973
974
975
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
976

Pedro Gonnet's avatar
Pedro Gonnet committed
977
978
979
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
980

981
982
983
984
985
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
986
987
988
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

989
990
  /* No progeny? */
  if (full || !c->split) fun(c, data);
991
}
Pedro Gonnet's avatar
Pedro Gonnet committed
992
993

/**
994
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
995
996
 *
 * @param s The #space we are working in.
997
 * @param full Map to all cells, including cells with sub-cells.
998
999
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1000
 */
1001

1002
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1003
                          void (*fun)(struct cell *c, void *data), void *data) {
1004

1005
  int cid = 0;
1006

1007
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1008
1009
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
1010
}
1011

Pedro Gonnet's avatar
Pedro Gonnet committed
1012
1013
1014
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
1015

1016
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1017

1018
1019
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1020

1021
1022
1023
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1024
1025
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
1026
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1027

1028
1029
1030
1031
1032
1033
1034
1035
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
1036
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1037
                         void (*fun)(struct cell *c, void *data), void *data) {
1038

1039
  int cid = 0;
1040
1041

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1042
1043
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
1044
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1045
1046
1047
1048
1049
1050
1051

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1052

1053
void space_do_split(struct space *s, struct cell *c) {
1054

1055
1056
1057
  const int count = c->count;
  const int gcount = c->gcount;
  int maxdepth = 0;
1058
1059
  float h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0;
1060
  struct cell *temp;
1061
1062
  struct part *parts = c->parts;
  struct gpart *gparts = c->gparts;
1063
  struct xpart *xparts = c->xparts;
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
1075
    for (int k = 0; k < 8; k++) {
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
1102
    for (int k = 0; k < 8; k++)
1103
1104
1105
1106
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1107
        space_do_split(s, c->progeny[k]);
1108
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1109
1110
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1111
1112
1113
1114
1115
1116
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1117
1118
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */
1132
    for (int k = 0; k < count; k++) {
1133
      struct part *p = &parts[k];
1134
      struct xpart *xp = &xparts[k];
1135
1136
      const float h = p->h;
      const int ti_end = p->ti_end;
1137
1138
1139
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
1140
      if (h > h_max) h_max = h;
1141
1142
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1143
    }
1144
1145
1146
1147
1148
1149
    for (int k = 0; k < gcount; k++) {
      struct gpart *p = &gparts[k];
      const int ti_end = p->ti_end;
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
    }
1150
    c->h_max = h_max;
1151
1152
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1153
  }
1154

1155
  /* Set ownership according to the start of the parts array. */
Matthieu Schaller's avatar
Matthieu Schaller committed
1156
  if (s->nr_parts > 0)
1157
1158
    c->owner =
        ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
1159
  else