space.c 45.4 KB
Newer Older
1
/*******************************************************************************
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23
24
25
26
27
28
29
30

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
#include <string.h>
32
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
33

34
35
/* MPI headers. */
#ifdef WITH_MPI
36
#include <mpi.h>
37
38
#endif

39
40
41
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
42
/* Local headers. */
43
#include "atomic.h"
44
#include "engine.h"
45
#include "error.h"
46
#include "kernel_hydro.h"
47
#include "lock.h"
48
#include "minmax.h"
49
#include "runner.h"
50
#include "tools.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
51

52
53
54
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
55
56
/* Split size. */
int space_splitsize = space_splitsize_default;
57
int space_subsize = space_subsize_default;
58
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
59
60
61

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

90
91
92
93
94
95
96
97
98
99
100
101
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

102
103
104
105
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  /* Get the relative distance between the pairs, wrapping. */
106
107
108
  const int periodic = s->periodic;
  double dx[3];
  for (int k = 0; k < 3; k++) {
109
110
111
112
113
114
115
116
117
118
119
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
120
  int sid = 0;
121
  for (int k = 0; k < 3; k++)
122
123
124
125
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
126
    struct cell *temp = *ci;
127
128
    *ci = *cj;
    *cj = temp;
129
    for (int k = 0; k < 3; k++) shift[k] = -shift[k];
130
131
132
133
134
135
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
136

137
/**
138
 * @brief Recursively dismantle a cell tree.
139
140
 *
 */
141
142
143
144

void space_rebuild_recycle(struct space *s, struct cell *c) {

  if (c->split)
145
    for (int k = 0; k < 8; k++)
146
147
148
149
150
151
152
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

153
/**
154
 * @brief Re-build the cell grid.
155
 *
156
157
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
158
 * @param verbose Print messages to stdout or not.
159
 */
160

161
void space_regrid(struct space *s, double cell_max, int verbose) {
162

163
  const size_t nr_parts = s->nr_parts;
164
  struct cell *restrict c;
165
  ticks tic = getticks();
166
167
168

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
169
  float h_max = s->cell_min / kernel_gamma / space_stretch;
170
  if (nr_parts > 0) {
171
    if (s->cells != NULL) {
Tom Theuns's avatar
Tom Theuns committed
172
      for (int k = 0; k < s->nr_cells; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
173
        if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
174
175
      }
    } else {
176
      for (size_t k = 0; k < nr_parts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
177
        if (s->parts[k].h > h_max) h_max = s->parts[k].h;
178
179
      }
      s->h_max = h_max;
180
181
182
183
184
185
186
187
188
189
    }
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
190
      error("Failed to aggregate the rebuild flag across nodes.");
191
192
193
    h_max = buff;
  }
#endif
194
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
195
196

  /* Get the new putative cell dimensions. */
197
  int cdim[3];
198
  for (int k = 0; k < 3; k++)
199
200
201
202
203
204
205
206
207
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

208
209
210
/* In MPI-Land, changing the top-level cell size requires that the
 * global partition is recomputed and the particles redistributed.
 * Be prepared to do that. */
211
#ifdef WITH_MPI
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
  double oldh[3];
  double oldcdim[3];
  int *oldnodeIDs = NULL;
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2]) {

    /* Capture state of current space. */
    oldcdim[0] = s->cdim[0];
    oldcdim[1] = s->cdim[1];
    oldcdim[2] = s->cdim[2];
    oldh[0] = s->h[0];
    oldh[1] = s->h[1];
    oldh[2] = s->h[2];

    if ((oldnodeIDs = (int *)malloc(sizeof(int) * s->nr_cells)) == NULL)
      error("Failed to allocate temporary nodeIDs.");

    int cid = 0;
    for (int i = 0; i < s->cdim[0]; i++) {
      for (int j = 0; j < s->cdim[1]; j++) {
        for (int k = 0; k < s->cdim[2]; k++) {
          cid = cell_getid(oldcdim, i, j, k);
          oldnodeIDs[cid] = s->cells[cid].nodeID;
        }
      }
    }
  }

239
240
241
242
243
244
245
246
247
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
248
      for (int k = 0; k < s->nr_cells; k++) {
249
250
251
252
253
254
255
256
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
257
    for (int k = 0; k < 3; k++) {
258
259
260
261
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
262
    const float dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));
263
264
265
266
267
268
269

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
270
    for (int k = 0; k < s->nr_cells; k++)
271
272
273
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
274
275
276
    for (int i = 0; i < cdim[0]; i++)
      for (int j = 0; j < cdim[1]; j++)
        for (int k = 0; k < cdim[2]; k++) {
277
278
279
280
281
282
283
284
285
286
287
288
289
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
290
        }
291
292

    /* Be verbose about the change. */
293
294
295
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
296
297
    fflush(stdout);

298
#ifdef WITH_MPI
299
300
301
302
303
    if (oldnodeIDs != NULL) {
      /* We have changed the top-level cell dimension, so need to redistribute
       * cells around the nodes. We repartition using the old space node
       * positions as a grid to resample. */
      if (s->e->nodeID == 0)
304
305
306
        message(
            "basic cell dimensions have increased - recalculating the "
            "global partition.");
307

308
      if (!partition_space_to_space(oldh, oldcdim, oldnodeIDs, s)) {
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

        /* Failed, try another technique that requires no settings. */
        message("Failed to get a new partition, trying less optimal method");
        struct partition initial_partition;
#ifdef HAVE_METIS
        initial_partition.type = INITPART_METIS_NOWEIGHT;
#else
        initial_partition.type = INITPART_VECTORIZE;
#endif
        partition_initial_partition(&initial_partition, s->e->nodeID,
                                    s->e->nr_nodes, s);
      }

      /* Re-distribute the particles to their new nodes. */
      engine_redistribute(s->e);

      /* Make the proxies. */
      engine_makeproxies(s->e);
327

328
329
      /* Finished with these. */
      free(oldnodeIDs);
330
331
    }
#endif
332
  } /* re-build upper-level cells? */
333
334
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
335
336
337
338
339

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
340
    for (int k = 0; k < s->nr_cells; k++) {
341
342
343
344
345
346
347
348
349
350
351
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
352
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
353
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
354
355
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
356
      s->cells[k].super = &s->cells[k];
357
    }
358
359
    s->maxdepth = 0;
  }
360
361
362
363

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
364
}
365
366
367
368
369
370

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
371
 * @param verbose Print messages to stdout or not
372
373
 *
 */
374

375
void space_rebuild(struct space *s, double cell_max, int verbose) {
376

Matthieu Schaller's avatar
Matthieu Schaller committed
377
  const ticks tic = getticks();
378
379

  /* Be verbose about this. */
380
  // message("re)building space..."); fflush(stdout);
381
382

  /* Re-grid if necessary, or just re-set the cell data. */
383
  space_regrid(s, cell_max, verbose);
384

Pedro Gonnet's avatar
Pedro Gonnet committed
385
386
  size_t nr_parts = s->nr_parts;
  size_t nr_gparts = s->nr_gparts;
387
388
  struct cell *restrict cells = s->cells;

Matthieu Schaller's avatar
Matthieu Schaller committed
389
390
391
  const double ih[3] = {s->ih[0], s->ih[1], s->ih[2]};
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
  const int cdim[3] = {s->cdim[0], s->cdim[1], s->cdim[2]};
392
393
394
395

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
396
397
  int *ind;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
398
    error("Failed to allocate temporary particle indices.");
Pedro Gonnet's avatar
Pedro Gonnet committed
399
  for (size_t k = 0; k < nr_parts; k++) {
400
401
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
402
403
404
405
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
406
    ind[k] =
407
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
408
    cells[ind[k]].count++;
409
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
410
411
  // message( "getting particle indices took %.3f %s." ,
  // clocks_from_ticks(getticks() - tic), clocks_getunit()):
412

413
414
415
416
417
418
419
  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
  const size_t gind_size = s->size_gparts;
  int *gind;
  if ((gind = (int *)malloc(sizeof(int) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
420
    struct gpart *restrict gp = &s->gparts[k];
421
422
423
424
425
426
427
428
429
430
431
432
    for (int j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
    gind[k] =
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
    cells[gind[k]].gcount++;
  }
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit());

433
434
#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
435
  const int local_nodeID = s->e->nodeID;
Pedro Gonnet's avatar
Pedro Gonnet committed
436
  for (size_t k = 0; k < nr_parts; k++)
437
    if (cells[ind[k]].nodeID != local_nodeID) {
438
439
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
440
      const struct part tp = s->parts[k];
441
442
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
443
444
445
446
447
448
      if (s->parts[k].gpart != NULL) {
        s->parts[k].gpart->part = &s->parts[k];
      }
      if (s->parts[nr_parts].gpart != NULL) {
        s->parts[nr_parts].gpart->part = &s->parts[nr_parts];
      }
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
449
      const struct xpart txp = s->xparts[k];
450
451
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
452
      const int t = ind[k];
453
454
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
455
456
    }

457
458
  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
459
460
    if (cells[gind[k]].nodeID != local_nodeID) {
      cells[gind[k]].gcount -= 1;
461
      nr_gparts -= 1;
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
462
      const struct gpart tp = s->gparts[k];
463
464
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
465
466
467
468
469
470
      if (s->gparts[k].id > 0) {
        s->gparts[k].part->gpart = &s->gparts[k];
      }
      if (s->gparts[nr_gparts].id > 0) {
        s->gparts[nr_gparts].part->gpart = &s->gparts[nr_gparts];
      }
Matthieu Schaller's avatar
Bug fix    
Matthieu Schaller committed
471
472
473
      const int t = gind[k];
      gind[k] = gind[nr_gparts];
      gind[nr_gparts] = t;
474
475
    }

476
477
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
478
  size_t nr_parts_exchanged = s->nr_parts - nr_parts;
479
  size_t nr_gparts_exchanged = s->nr_gparts - nr_gparts;
Pedro Gonnet's avatar
Pedro Gonnet committed
480
481
482
483
  engine_exchange_strays(s->e, nr_parts, &ind[nr_parts], &nr_parts_exchanged,
                         nr_gparts, &gind[nr_gparts], &nr_gparts_exchanged);

  /* Set the new particle counts. */
484
  s->nr_parts = nr_parts + nr_parts_exchanged;
485
  s->nr_gparts = nr_gparts + nr_gparts_exchanged;
486
487

  /* Re-allocate the index array if needed.. */
488
  if (s->nr_parts > ind_size) {
489
490
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
491
      error("Failed to allocate temporary particle indices.");
492
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
493
494
    free(ind);
    ind = ind_new;
495
496
497
  }

  /* Assign each particle to its cell. */
Pedro Gonnet's avatar
Pedro Gonnet committed
498
  for (size_t k = nr_parts; k < s->nr_parts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
499
    const struct part *const p = &s->parts[k];
500
    ind[k] =
501
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
502
503
504
505
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
506
  }
507
  nr_parts = s->nr_parts;
508
509
510
#endif

  /* Sort the parts according to their cells. */
511
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
512
513

  /* Re-link the gparts. */
Pedro Gonnet's avatar
Pedro Gonnet committed
514
  for (size_t k = 0; k < nr_parts; k++)
515
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
516

517
  /* Verify space_sort_struct. */
518
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
519
      if ( ind[k-1] > ind[k] ) {
520
521
          error( "Sort failed!" );
          }
522
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
523
524
525
526
527
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
528
  free(ind);
529

530
531
532
533
#ifdef WITH_MPI

  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
534
535
    int *gind_new;
    if ((gind_new = (int *)malloc(sizeof(int) * s->nr_gparts)) == NULL)
536
      error("Failed to allocate temporary g-particle indices.");
537
    memcpy(gind_new, gind, sizeof(int) * nr_gparts);
538
539
540
541
542
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
543
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
544
    const struct gpart *const p = &s->gparts[k];
545
546
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
Matthieu Schaller's avatar
Typo    
Matthieu Schaller committed
547
    cells[gind[k]].gcount += 1;
548
549
550
551
552
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;
553

554
#endif
555
556

  /* Sort the parts according to their cells. */
Matthieu Schaller's avatar
Matthieu Schaller committed
557
  space_gparts_sort(s, gind, nr_gparts, 0, s->nr_cells - 1, verbose);
558
559

  /* Re-link the parts. */
560
  for (int k = 0; k < nr_gparts; k++)
561
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
562
563

  /* We no longer need the indices as of here. */
564
  free(gind);
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
  /* Verify that the links are correct */
  /* MATTHIEU: To be commented out once we are happy */
  for (size_t k = 0; k < nr_gparts; ++k) {

    if (s->gparts[k].id > 0) {

      if (s->gparts[k].part->gpart != &s->gparts[k]) error("Linking problem !");

      if (s->gparts[k].x[0] != s->gparts[k].part->x[0] ||
          s->gparts[k].x[1] != s->gparts[k].part->x[1] ||
          s->gparts[k].x[2] != s->gparts[k].part->x[2])
        error("Linked particles are not at the same position !");
    }
  }
  for (size_t k = 0; k < nr_parts; ++k) {

    if (s->parts[k].gpart != NULL) {

      if (s->parts[k].gpart->part != &s->parts[k]) error("Linking problem !");
    }
  }

588
589
  /* Hook the cells up to the parts. */
  // tic = getticks();
590
591
592
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
593
594
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
595
596
597
598
599
600
601
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
602
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
603
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
604
605
606

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
623
  const ticks tic = getticks();
624
625

  for (int k = 0; k < s->nr_cells; k++)
626
627
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
628
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
629

630
631
632
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
633
}
634

635
/**
636
637
 * @brief Sort the particles and condensed particles according to the given
 *indices.
638
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
639
 * @param s The #space.
640
641
642
643
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
644
 * @param verbose Are we talkative ?
645
 */
646

647
void space_parts_sort(struct space *s, int *ind, size_t N, int min, int max,
648
649
                      int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
650
  const ticks tic = getticks();
651
652

  /*Populate the global parallel_sort structure with the input data */
653
654
655
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
656
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
657
658
659
660
661
662
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

663
  /* Add the first interval. */
664
665
666
667
668
669
670
671
672
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

673
  /* Launch the sorting tasks. */
674
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_part_sort), 0);
675
676

  /* Verify space_sort_struct. */
677
  /* for (int i = 1; i < N; i++)
678
    if (ind[i - 1] > ind[i])
679
680
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
681
682
            ind[i], min, max);
  message("Sorting succeeded."); */
683

684
  /* Clean up. */
685
  free(space_sort_struct.stack);
686
687
688
689

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
690
}
691

692
void space_do_parts_sort() {
693

694
  /* Pointers to the sorting data. */
695
  int *ind = space_sort_struct.ind;
696
697
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
698

699
  /* Main loop. */
700
  while (space_sort_struct.waiting) {
701

702
    /* Grab an interval off the queue. */
703
704
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
705

706
    /* Wait for the entry to be ready, or for the sorting do be done. */
707
708
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
709

710
    /* Get the stack entry. */
711
712
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
713
714
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
715
    space_sort_struct.stack[qid].ready = 0;
716

717
718
    /* Loop over sub-intervals. */
    while (1) {
719

720
      /* Bring beer. */
721
      const int pivot = (min + max) / 2;
722
723
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
724
725

      /* One pass of QuickSort's partitioning. */
726
727
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
728
729
730
731
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
732
          size_t temp_i = ind[ii];
733
734
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
735
          struct part temp_p = parts[ii];
736
737
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
738
          struct xpart temp_xp = xparts[ii];
739
740
741
742
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
743

744
      /* Verify space_sort_struct. */
745
746
747
748
749
750
751
752
753
754
755
756
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
757
758
759
760
761
762

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
763
764
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
765
766
          while (space_sort_struct.stack[qid].ready)
            ;
767
768
769
770
771
772
773
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
774
          space_sort_struct.stack[qid].ready = 1;
775
        }
776

777
778
779
780
781
782
783
784
785
786
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
787
        if (pivot + 1 < max) {
788
789
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
790
791
          while (space_sort_struct.stack[qid].ready)
            ;
792
793
794
795
796
797
798
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
799
          space_sort_struct.stack[qid].ready = 1;
800
        }
801

802
803
804
805
806
807
808
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
809

810
811
    } /* loop over sub-intervals. */

812
    atomic_dec(&space_sort_struct.waiting);
813
814

  } /* main loop. */
815
816
}

817
818
819
820
821
/**
 * @brief Sort the g-particles and condensed particles according to the given
 *indices.
 *
 * @param s The #space.
Matthieu Schaller's avatar
Matthieu Schaller committed
822
823
 * @param ind The indices with respect to which the gparts are sorted.
 * @param N The number of gparts
824
825
826
827
 * @param min Lowest index.
 * @param max highest index.
 * @param verbose Are we talkative ?
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
828
void space_gparts_sort(struct space *s, int *ind, size_t N, int min, int max,
829
830
                       int verbose) {

Matthieu Schaller's avatar
Matthieu Schaller committed
831
  const ticks tic = getticks();
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

  /*Populate the global parallel_sort structure with the input data */
  space_sort_struct.gparts = s->gparts;
  space_sort_struct.ind = ind;
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  /* Add the first interval. */
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  /* Launch the sorting tasks. */
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_gpart_sort), 0);

  /* Verify space_sort_struct. */
  /* for (int i = 1; i < N; i++)
    if (ind[i - 1] > ind[i])
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
            ind[i], min, max);
  message("Sorting succeeded."); */

  /* Clean up. */
  free(space_sort_struct.stack);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

void space_do_gparts_sort() {

  /* Pointers to the sorting data. */
Matthieu Schaller's avatar
Matthieu Schaller committed
875
  int *ind = space_sort_struct.ind;
876
  struct gpart *gparts = space_sort_struct.gparts;
877

878
  /* Main loop. */
879
  while (space_sort_struct.waiting) {
880

881
    /* Grab an interval off the queue. */
882
883
884
885
886
887
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;

    /* Wait for the entry to be ready, or for the sorting do be done. */
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
888

889
    /* Get the stack entry. */
890
891
892
893
894
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
    space_sort_struct.stack[qid].ready = 0;
895
896
897

    /* Loop over sub-intervals. */
    while (1) {
898

899
      /* Bring beer. */
900
901
902
      const int pivot = (min + max) / 2;
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
903
904

      /* One pass of QuickSort's partitioning. */
905
906
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
907
908
909
910
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
911
          size_t temp_i = ind[ii];
912
913
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
914
          struct gpart temp_p = gparts[ii];
915
916
917
918
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
919

920
      /* Verify space_sort_struct. */
921
922
923
924
925
926
927
928
929
930
931
932
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
933
934
935
936
937
938

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
939
940
941
942
943
944
945
946
947
948
949
950
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
951
        }
952

953
954
955
956
957
958
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
959

960
961
962
      } else {

        /* Recurse on the right? */
963
        if (pivot + 1 < max) {
964
965
966
967
968
969
970
971
972
973
974
975
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
976
977
978
979
980
981
982
983
984
985
986
987
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

988
    atomic_dec(&space_sort_struct.waiting);
989
990

  } /* main loop. */
991
}
992

Pedro Gonnet's avatar
Pedro Gonnet committed
993
/**
994
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
995
996
 */

997
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
998

999
1000
1001
1002
1003
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1004

1005
1006
1007
/**
 * @brief Map a function to all particles in a cell recursively.
 *
1008
 * @param c The #cell we are working in.
1009
1010
1011
1012
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
1013
1014
1015
1016
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
1017
1018
1019
1020
1021
1022

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1023

1024
1025
1026
1027
1028
1029
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
1030
/**
1031
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
1032
1033
 *
 * @param s The #space we are working in.
1034
1035
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1036
1037
 */

1038
1039
1040
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1041

1042
1043
  int cid = 0;

1044
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1045
1046
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
1047
}
1048

1049
1050
1051
1052
1053
1054
1055
1056
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
1057
1058
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++