cell.c 155 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
56
#include "error.h"
57
#include "feedback.h"
58
#include "gravity.h"
59
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
60
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
61
#include "memswap.h"
62
#include "minmax.h"
63
#include "scheduler.h"
64
#include "space.h"
65
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
66
#include "stars.h"
67
#include "timers.h"
68
#include "tools.h"
69
#include "tracers.h"
70

71
72
73
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
74
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

162
163
164
165
166
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
167
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
168
169
  /* Number of cells in this subtree. */
  int count = 1;
170

171
172
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
173
    for (int k = 0; k < 8; k++)
174
175
176
177
178
179
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

180
/**
181
 * @brief Link the cells recursively to the given #part array.
182
183
184
185
186
187
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
188
int cell_link_parts(struct cell *c, struct part *parts) {
189
#ifdef SWIFT_DEBUG_CHECKS
190
191
192
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

193
  if (c->hydro.parts != NULL)
194
195
196
    error("Linking parts into a cell that was already linked");
#endif

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
213
 * @brief Link the cells recursively to the given #gpart array.
214
215
 *
 * @param c The #cell.
216
 * @param gparts The #gpart array.
217
218
219
 *
 * @return The number of particles linked.
 */
220
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
221
222
223
224
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

225
  if (c->grav.parts != NULL)
226
    error("Linking gparts into a cell that was already linked");
227
#endif
228

229
  c->grav.parts = gparts;
230
231
232
233
234
235
236
237
238
239
240

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
241
  return c->grav.count;
242
243
}

244
245
246
247
248
249
250
251
252
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
253
254
255
256
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

257
  if (c->stars.parts != NULL)
258
259
260
    error("Linking sparts into a cell that was already linked");
#endif

261
  c->stars.parts = sparts;
262
263
264
265
266
267
268
269
270
271
272

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
273
  return c->stars.count;
274
275
}

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

309
310
311
312
313
314
315
316
317
318
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
319
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
320
321
#ifdef WITH_MPI

322
323
324
325
326
327
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
328
  if (c->mpi.hydro.recv_xv != NULL) {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
346
347
348
    return count;
  } else {
    return 0;
349
  }
350
351
352
353

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
354
355
}

356
357
358
359
360
361
362
363
364
365
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
366
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
367
368
#ifdef WITH_MPI

369
370
371
372
373
374
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
375
  if (c->mpi.grav.recv != NULL) {
376
    /* Recursively attach the gparts */
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
393
394
395
    return count;
  } else {
    return 0;
396
  }
397
398
399
400

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
401
402
}

403
404
405
406
407
408
409
410
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
411
int cell_count_parts_for_tasks(const struct cell *c) {
412
413
#ifdef WITH_MPI

414
415
416
417
418
419
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
420
  if (c->mpi.hydro.recv_xv != NULL) {
421
422
423
424
425
426
427
428
429
430
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
431
432
433
    return count;
  } else {
    return 0;
434
  }
435
436
437
438

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
439
440
}

441
442
443
444
445
446
447
448
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
449
int cell_count_gparts_for_tasks(const struct cell *c) {
450
451
#ifdef WITH_MPI

452
453
454
455
456
457
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
458
  if (c->mpi.grav.recv != NULL) {
459
460
461
462
463
464
465
466
467
468
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
469
470
471
    return count;
  } else {
    return 0;
472
  }
473
474
475
476

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
477
478
}

479
480
481
482
483
484
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
485
486
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
487
488
489
 *
 * @return The number of packed cells.
 */
490
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
491
              const int with_gravity) {
492
493
#ifdef WITH_MPI

494
  /* Start by packing the data of the current cell. */
495
  pc->hydro.h_max = c->hydro.h_max;
496
  pc->stars.h_max = c->stars.h_max;
497
498
499
500
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
501
  pc->stars.ti_end_min = c->stars.ti_end_min;
502
  pc->stars.ti_end_max = c->stars.ti_end_max;
503
504
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
505
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
506
  pc->stars.ti_old_part = c->stars.ti_old_part;
507
  pc->hydro.count = c->hydro.count;
508
509
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
510
  pc->maxdepth = c->maxdepth;
511

512
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
513
  if (with_gravity) {
514
    const struct gravity_tensors *mp = c->grav.multipole;
515

516
517
518
519
520
521
522
523
524
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
525
526
  }

527
528
529
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
530
531

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
532
533
  int count = 1;
  for (int k = 0; k < 8; k++)
534
535
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
536
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
537
    } else {
538
      pc->progeny[k] = -1;
539
    }
540
541

  /* Return the number of packed cells used. */
542
  c->mpi.pcell_size = count;
543
  return count;
544
545
546
547
548

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
549
550
}

551
552
553
554
555
556
557
558
559
560
561
562
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
563
  tags[0] = c->mpi.tag;
564
565
566
567
568
569
570
571

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
572
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
573
574
575
576
577
578
579
580
581
582
583
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

584
585
586
587
588
589
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
590
591
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
592
593
594
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
595
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
596
                struct space *restrict s, const int with_gravity) {
597
598
599
#ifdef WITH_MPI

  /* Unpack the current pcell. */
600
  c->hydro.h_max = pc->hydro.h_max;
601
  c->stars.h_max = pc->stars.h_max;
602
603
604
605
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
606
  c->stars.ti_end_min = pc->stars.ti_end_min;
607
  c->stars.ti_end_max = pc->stars.ti_end_max;
608
609
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
610
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
611
  c->stars.ti_old_part = pc->stars.ti_old_part;
612
  c->hydro.count = pc->hydro.count;
613
614
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
615
616
  c->maxdepth = pc->maxdepth;

617
618
619
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
620

621
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
622
  if (with_gravity) {
623
    struct gravity_tensors *mp = c->grav.multipole;
624

625
626
627
628
629
630
631
632
633
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
634
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
635

636
637
638
639
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
640
  c->split = 0;
641
642
643
644
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
645
      temp->hydro.count = 0;
646
647
      temp->grav.count = 0;
      temp->stars.count = 0;
648
649
650
651
652
653
654
655
656
657
658
659
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
660
      temp->hydro.dx_max_part = 0.f;
661
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
662
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
663
      temp->stars.dx_max_sort = 0.f;
664
665
666
667
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
668
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
669
670
671
    }

  /* Return the total number of unpacked cells. */
672
  c->mpi.pcell_size = count;
673
674
675
676
677
678
679
680
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

681
682
683
684
685
686
687
688
689
690
691
692
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
693
  c->mpi.tag = tags[0];
694
695
696
697
698
699
700
701
702
703
704

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
705
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
706
707
708
709
710
711
712
713
714
715
716
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

717
718
719
720
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
721
 * @param pcells (output) The end-of-timestep information we pack into
722
723
724
 *
 * @return The number of packed cells.
 */
725
726
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
727
728
#ifdef WITH_MPI

729
  /* Pack this cell's data. */
730
731
732
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
733

734
735
736
737
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
738
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
739
740
741
742
    }

  /* Return the number of packed values. */
  return count;
743
744
745
746
747

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
748
749
}

750
751
752
753
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
754
 * @param pcells The end-of-timestep information to unpack
755
756
757
 *
 * @return The number of cells created.
 */
758
759
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
760
761
#ifdef WITH_MPI

762
  /* Unpack this cell's data. */
763
764
765
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
766

767
768
769
770
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
902
903
904
    }

  /* Return the number of packed values. */
905
  return count;
906
907
908
909
910

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
911
}
912

913
914
915
916
917
918
919
920
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
921
922
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
955
956
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

981
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
982
983
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
984
985
986
987
988
989
990
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
991
                         struct gravity_tensors *restrict pcells) {
992
993
994
#ifdef WITH_MPI

  /* Pack this cell's data. */
995
  pcells[0] = *c->grav.multipole;
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1022
                           struct gravity_tensors *restrict pcells) {
1023
1024
1025
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1026
  *c->grav.multipole = pcells[0];
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1044
/**
1045
 * @brief Lock a cell for access to its array of #part and hold its parents.
1046
1047
 *
 * @param c The #cell.
1048
 * @return 0 on success, 1 on failure
1049
 */
1050
1051
1052
1053
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1054
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1055
1056
1057
1058
1059
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1060
  if (c->hydro.hold) {
1061
    /* Unlock this cell. */
1062
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1063
1064
1065
1066
1067
1068
1069

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1070
  struct cell *finger;
1071
1072
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1073
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1074
1075

    /* Increment the hold. */
1076
    atomic_inc(&finger->hydro.hold);
1077
1078

    /* Unlock the cell. */
1079
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1091
1092
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1093
      atomic_dec(&finger2->hydro.hold);
1094
1095

    /* Unlock this cell. */
1096
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1097
1098
1099
1100
1101
1102
1103

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1104
1105
1106
1107
1108
1109
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1110
1111
1112
1113
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1114
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1115
1116
1117
1118
1119
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1120
  if (c->grav.phold) {
1121
    /* Unlock this cell. */
1122
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1123
1124
1125
1126
1127
1128
1129

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1130
  struct cell *finger;
1131
1132
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1133
    if (lock_trylock(&finger->grav.plock) != 0) break;
1134
1135

    /* Increment the hold. */
1136
    atomic_inc(&finger->grav.phold);
1137
1138

    /* Unlock the cell. */
1139
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1151
1152
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1153
      atomic_dec(&finger2->grav.phold);
1154
1155

    /* Unlock this cell. */
1156
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1157
1158
1159
1160
1161
1162

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1174
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1175
1176
1177
1178
1179
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1180
  if (c->grav.mhold) {
1181
    /* Unlock this cell. */
1182
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1193
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1194
1195

    /* Increment the hold. */
1196
    atomic_inc(&finger->grav.mhold);
1197
1198

    /* Unlock the cell. */
1199
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1213
      atomic_dec(&finger2->grav.mhold);
1214
1215

    /* Unlock this cell. */
1216
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1217
1218
1219
1220
1221
1222
1223

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1234
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1235
1236
1237
1238
1239
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1240
  if (c->stars.hold) {
1241
    /* Unlock this cell. */
1242
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1253
    if (lock_trylock(&finger->stars.lock) != 0) break;
1254
1255

    /* Increment the hold. */
1256
    atomic_inc(&finger->stars.hold);
1257
1258

    /* Unlock the cell. */
1259
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1273
      atomic_dec(&finger2->stars.hold);
1274
1275

    /* Unlock this cell. */
1276
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1277
1278
1279
1280
1281
1282
1283

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1284
/**
1285
 * @brief Unlock a cell's parents for access to #part array.
1286
1287
1288
 *
 * @param c The #cell.
 */
1289
1290
1291
1292
void cell_unlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1293
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1294
1295

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1296
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1297
    atomic_dec(&finger->hydro.hold);
1298
1299
1300
1301

  TIMER_TOC(timer_locktree);
}

1302
1303
1304
1305
1306
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1307
1308
1309
1310
void cell_gunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1311
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1312
1313

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1314
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1315
    atomic_dec(&finger->grav.phold);
1316
1317
1318
1319

  TIMER_TOC(timer_locktree);
}

1320
1321
1322
1323
1324
1325
1326
1327
1328
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1329
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1330
1331
1332

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1333
    atomic_dec(&finger->grav.mhold);
1334
1335
1336
1337

  TIMER_TOC(timer_locktree);
}

1338
1339
1340
1341
1342
1343
1344
1345
1346
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */