cell.c 35 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "error.h"
54
#include "gravity.h"
55
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
57
#include "memswap.h"
58
#include "minmax.h"
59
#include "scheduler.h"
60
61
#include "space.h"
#include "timers.h"
62

63
64
65
/* Global variables. */
int cell_next_tag = 0;

66
67
68
69
70
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
71
int cell_getsize(struct cell *c) {
72

Pedro Gonnet's avatar
Pedro Gonnet committed
73
74
  /* Number of cells in this subtree. */
  int count = 1;
75

76
77
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
78
    for (int k = 0; k < 8; k++)
79
80
81
82
83
84
85
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

/**
86
87
88
89
90
91
92
93
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
94
95
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

96
97
#ifdef WITH_MPI

98
99
  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
100
101
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
102
  c->ti_old = pc->ti_old;
103
  c->count = pc->count;
104
  c->gcount = pc->gcount;
105
  c->scount = pc->scount;
106
  c->tag = pc->tag;
Matthieu Schaller's avatar
Matthieu Schaller committed
107

108
109
  /* Number of new cells created. */
  int count = 1;
110
111

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
112
  for (int k = 0; k < 8; k++)
113
    if (pc->progeny[k] >= 0) {
114
115
      struct cell *temp;
      space_getcells(s, 1, &temp);
116
      temp->count = 0;
117
      temp->gcount = 0;
118
      temp->scount = 0;
119
120
121
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
122
123
124
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
125
      temp->dmin = c->dmin / 2;
126
127
128
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
129
130
      temp->depth = c->depth + 1;
      temp->split = 0;
131
      temp->dx_max = 0.f;
132
133
      temp->nodeID = c->nodeID;
      temp->parent = c;
134
      temp->ti_old = c->ti_old;
135
136
137
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
138
139
    }

140
  /* Return the total number of unpacked cells. */
141
  c->pcell_size = count;
142
  return count;
143
144
145
146
147

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
148
}
149

150
/**
151
 * @brief Link the cells recursively to the given #part array.
152
153
154
155
156
157
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
158
int cell_link_parts(struct cell *c, struct part *parts) {
159

160
161
162
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
163
164
165
166
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
167
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
168
169
    }
  }
170

171
  /* Return the total number of linked particles. */
172
173
  return c->count;
}
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

200
201
202
203
204
205
206
207
208
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
209
210
int cell_pack(struct cell *c, struct pcell *pc) {

211
212
#ifdef WITH_MPI

213
214
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
215
216
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
217
  pc->count = c->count;
218
  pc->gcount = c->gcount;
219
220
221
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
222
223
  int count = 1;
  for (int k = 0; k < 8; k++)
224
225
226
227
228
229
230
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
231
232
  c->pcell_size = count;
  return count;
233
234
235
236
237

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
238
239
}

240
241
242
243
244
245
246
247
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param ti_ends (output) The time information we pack into
 *
 * @return The number of packed cells.
 */
248
249
int cell_pack_ti_ends(struct cell *c, int *ti_ends) {

250
251
#ifdef WITH_MPI

252
253
  /* Pack this cell's data. */
  ti_ends[0] = c->ti_end_min;
254

255
256
257
258
259
260
261
262
263
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
  return count;
264
265
266
267
268

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
269
270
}

271
272
273
274
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
275
 * @param ti_ends The time information to unpack
276
277
278
 *
 * @return The number of cells created.
 */
279
280
int cell_unpack_ti_ends(struct cell *c, int *ti_ends) {

281
282
#ifdef WITH_MPI

283
284
  /* Unpack this cell's data. */
  c->ti_end_min = ti_ends[0];
285

286
287
288
289
290
291
292
293
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
294
  return count;
295
296
297
298
299

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
300
}
301

302
/**
303
 * @brief Lock a cell for access to its array of #part and hold its parents.
304
305
 *
 * @param c The #cell.
306
 * @return 0 on success, 1 on failure
307
 */
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
330
  struct cell *finger;
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
353
354
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
355
      atomic_dec(&finger2->hold);
356
357
358
359
360
361
362
363
364
365

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

366
367
368
369
370
371
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
394
  struct cell *finger;
395
396
397
398
399
400
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
401
    atomic_inc(&finger->ghold);
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
417
418
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
419
      atomic_dec(&finger2->ghold);
420
421
422
423
424
425
426
427
428

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

494
/**
495
 * @brief Unlock a cell's parents for access to #part array.
496
497
498
 *
 * @param c The #cell.
 */
499
500
501
502
503
504
505
506
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
507
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
508
    atomic_dec(&finger->hold);
509
510
511
512

  TIMER_TOC(timer_locktree);
}

513
514
515
516
517
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
518
519
520
521
522
523
524
525
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
526
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
527
    atomic_dec(&finger->ghold);
528
529
530
531

  TIMER_TOC(timer_locktree);
}

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

551
552
553
554
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
555
556
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
557
558
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
Peter W. Draper's avatar
Peter W. Draper committed
559
560
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
561
 */
562
563
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
564
                struct cell_buff *gbuff) {
565

566
  const int count = c->count, gcount = c->gcount, scount = c->scount;
567
568
569
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
570
  struct spart *sparts = c->sparts;
571
572
573
574
575
576
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

577
578
579
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
580
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
581
        buff[k].x[2] != parts[k].x[2])
582
583
      error("Inconsistent buff contents.");
  }
584
585
586
587
588
589
590
591
592
593
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
594
#endif /* SWIFT_DEBUG_CHECKS */
595
596
597
598
599
600

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
    const int bid = (parts[k].x[0] > pivot[0]) * 4 +
                    (parts[k].x[1] > pivot[1]) * 2 + (parts[k].x[2] > pivot[2]);
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
601
    buff[k].ind = bid;
602
  }
603

604
605
606
607
608
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
609
610
  }

611
612
613
614
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
615
      int bid = buff[k].ind;
616
617
618
619
620
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
621
          while (buff[j].ind == bid) {
622
623
624
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
625
626
627
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
          memswap(&buff[j], &bid, sizeof(int));
628
629
630
        }
        parts[k] = part;
        xparts[k] = xpart;
Matthieu Schaller's avatar
Matthieu Schaller committed
631
        buff[k].ind = bid;
632
      }
633
      bucket_count[bid]++;
634
635
636
637
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
638
  for (int k = 0; k < 8; k++) {
639
640
641
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
642
643
644
  }

  /* Re-link the gparts. */
645
646
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
647

648
#ifdef SWIFT_DEBUG_CHECKS
649
  /* Verify that _all_ the parts have been assigned to a cell. */
650
651
652
653
654
655
656
657
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
658
659

  /* Verify a few sub-cells. */
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
#endif
676

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
    part_relink_gparts_to_sparts(sparts, count, sparts_offset);

  /* Finally, do the same song and dance for the gparts. */
731
732
733
734
735
736
737
738
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
    const int bid = (gparts[k].x[0] > pivot[0]) * 4 +
                    (gparts[k].x[1] > pivot[1]) * 2 +
                    (gparts[k].x[2] > pivot[2]);
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
739
    buff[k].ind = bid;
740
  }
741
742
743
744
745
746

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
747
748
  }

749
750
751
752
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
753
      int bid = buff[k].ind;
754
755
756
757
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
758
          while (buff[j].ind == bid) {
759
760
761
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
762
763
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
          memswap(&buff[j], &bid, sizeof(int));
764
765
        }
        gparts[k] = gpart;
Matthieu Schaller's avatar
Matthieu Schaller committed
766
        buff[k].ind = bid;
767
      }
768
      bucket_count[bid]++;
769
770
771
772
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
773
  for (int k = 0; k < 8; k++) {
774
775
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
776
777
778
  }

  /* Re-link the parts. */
779
  if (count > 0 && gcount > 0)
780
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
781
782
783
784

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
785
}
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
 * We compute the mean and standard deviation of the smoothing lengths in
 * logarithmic space and limit values to mean + 4 sigma.
 *
 * @param c The cell.
 */
void cell_sanitize(struct cell *c) {

  const int count = c->count;
  struct part *parts = c->parts;

  /* First collect some statistics */
  float h_mean = 0.f, h_mean2 = 0.f;
  float h_min = FLT_MAX, h_max = 0.f;
  for (int i = 0; i < count; ++i) {

806
    const float h = logf(parts[i].h);
807
808
809
810
811
812
813
814
    h_mean += h;
    h_mean2 += h * h;
    h_max = max(h_max, h);
    h_min = min(h_min, h);
  }
  h_mean /= count;
  h_mean2 /= count;
  const float h_var = h_mean2 - h_mean * h_mean;
815
  const float h_std = (h_var > 0.f) ? sqrtf(h_var) : 0.1f * h_mean;
816
817

  /* Choose a cut */
818
  const float h_limit = expf(h_mean + 4.f * h_std);
819
820

  /* Be verbose this is not innocuous */
821
822
  message("Cell properties: h_min= %f h_max= %f geometric mean= %f.",
          expf(h_min), expf(h_max), expf(h_mean));
823
824
825

  if (c->h_max > h_limit) {

826
    message("Smoothing lengths will be limited to (mean + 4sigma)= %f.",
827
828
829
830
831
832
            h_limit);

    /* Apply the cut */
    for (int i = 0; i < count; ++i) parts->h = min(parts[i].h, h_limit);

    c->h_max = h_limit;
833
834
835
836

  } else {

    message("Smoothing lengths will not be limited.");
837
838
839
  }
}

840
/**
841
 * @brief Converts hydro quantities to a valid state after the initial density
842
 * calculation
843
844
845
846
847
848
849
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
850
  struct xpart *xp = c->xparts;
851
852

  for (int i = 0; i < c->count; ++i) {
853
    hydro_convert_quantities(&p[i], &xp[i]);
854
855
856
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
857
858
859
860
861
862
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
863
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
864
  c->density = NULL;
865
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
866
  c->force = NULL;
867
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
868
}
869

870
871
872
873
874
875
876
877
878
879
/**
 * @brief Checks that a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_drift_point(struct cell *c, void *data) {

880
  integertime_t ti_current = *(integertime_t *)data;
881

882
  if (c->ti_old != ti_current && c->nodeID == engine_rank)
883
    error("Cell in an incorrect time-zone! c->ti_old=%lld ti_current=%lld",
884
885
886
          c->ti_old, ti_current);
}

887
888
889
890
891
892
893
894
895
896
897
898
/**
 * @brief Checks whether the cells are direct neighbours ot not. Both cells have
 * to be of the same size
 *
 * @param ci First #cell.
 * @param cj Second #cell.
 *
 * @todo Deal with periodicity.
 */
int cell_are_neighbours(const struct cell *restrict ci,
                        const struct cell *restrict cj) {

Matthieu Schaller's avatar
Matthieu Schaller committed
899
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
900
  if (ci->width[0] != cj->width[0]) error("Cells of different size !");
901
902
903
#endif

  /* Maximum allowed distance */
904
905
  const double min_dist =
      1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
906
907
908
909
910

  /* (Manhattan) Distance between the cells */
  for (int k = 0; k < 3; k++) {
    const double center_i = ci->loc[k];
    const double center_j = cj->loc[k];
911
    if (fabs(center_i - center_j) > min_dist) return 0;
912
913
914
915
916
  }

  return 1;
}

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

  struct multipole ma;

  if (c->gcount > 0) {

    /* Brute-force calculation */
    multipole_init(&ma, c->gparts, c->gcount);

    /* Compare with recursive one */
    struct multipole mb = c->multipole;

    if (fabsf(ma.mass - mb.mass) / fabsf(ma.mass + mb.mass) > 1e-5)
      error("Multipole masses are different (%12.15e vs. %12.15e)", ma.mass,
            mb.mass);

    for (int k = 0; k < 3; ++k)
941
      if (fabs(ma.CoM[k] - mb.CoM[k]) / fabs(ma.CoM[k] + mb.CoM[k]) > 1e-5)
942
943
944
        error("Multipole CoM are different (%12.15e vs. %12.15e", ma.CoM[k],
              mb.CoM[k]);

945
#if const_gravity_multipole_order >= 2
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    if (fabsf(ma.I_xx - mb.I_xx) / fabsf(ma.I_xx + mb.I_xx) > 1e-5 &&
        ma.I_xx > 1e-9)
      error("Multipole I_xx are different (%12.15e vs. %12.15e)", ma.I_xx,
            mb.I_xx);
    if (fabsf(ma.I_yy - mb.I_yy) / fabsf(ma.I_yy + mb.I_yy) > 1e-5 &&
        ma.I_yy > 1e-9)
      error("Multipole I_yy are different (%12.15e vs. %12.15e)", ma.I_yy,
            mb.I_yy);
    if (fabsf(ma.I_zz - mb.I_zz) / fabsf(ma.I_zz + mb.I_zz) > 1e-5 &&
        ma.I_zz > 1e-9)
      error("Multipole I_zz are different (%12.15e vs. %12.15e)", ma.I_zz,
            mb.I_zz);
    if (fabsf(ma.I_xy - mb.I_xy) / fabsf(ma.I_xy + mb.I_xy) > 1e-5 &&
        ma.I_xy > 1e-9)
      error("Multipole I_xy are different (%12.15e vs. %12.15e)", ma.I_xy,
            mb.I_xy);
    if (fabsf(ma.I_xz - mb.I_xz) / fabsf(ma.I_xz + mb.I_xz) > 1e-5 &&
        ma.I_xz > 1e-9)
      error("Multipole I_xz are different (%12.15e vs. %12.15e)", ma.I_xz,
            mb.I_xz);
    if (fabsf(ma.I_yz - mb.I_yz) / fabsf(ma.I_yz + mb.I_yz) > 1e-5 &&
        ma.I_yz > 1e-9)
      error("Multipole I_yz are different (%12.15e vs. %12.15e)", ma.I_yz,
            mb.I_yz);
970
#endif
971
  }
972
973
}

974
/**
975
 * @brief Frees up the memory allocated for this #cell.
976
 *
977
 * @param c The #cell.
978
 */
979
980
981
982
983
984
985
void cell_clean(struct cell *c) {

  free(c->sort);

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
986
}
987
988
989
990
991

/**
 * @brief Checks whether a given cell needs drifting or not.
 *
 * @param c the #cell.
992
 * @param e The #engine (holding current time information).
993
994
995
 *
 * @return 1 If the cell needs drifting, 0 otherwise.
 */
996
int cell_is_drift_needed(struct cell *c, const struct engine *e) {
997
998

  /* Do we have at least one active particle in the cell ?*/
999
  if (cell_is_active(c, e)) return 1;
1000
1001
1002
1003
1004
1005
1006

  /* Loop over the pair tasks that involve this cell */
  for (struct link *l = c->density; l != NULL; l = l->next) {

    if (l->t->type != task_type_pair && l->t->type != task_type_sub_pair)
      continue;

1007
1008
1009
    /* Is the other cell in the pair active ? */
    if ((l->t->ci == c && cell_is_active(l->t->cj, e)) ||
        (l->t->cj == c && cell_is_active(l->t->ci, e)))
1010
      return 1;
1011
1012
1013
1014
1015
  }

  /* No neighbouring cell has active particles. Drift not necessary */
  return 0;
}
1016
1017
1018
1019
1020
1021

/**
 * @brief Un-skips all the tasks associated with a given cell and checks
 * if the space needs to be rebuilt.
 *
 * @param c the #cell.
Peter W. Draper's avatar
Peter W. Draper committed
1022
 * @param s the #scheduler.
1023
1024
1025
 *
 * @return 1 If the space needs rebuilding. 0 otherwise.
 */
1026
int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
1027
1028
1029
1030
1031
1032

  /* Un-skip the density tasks involved with this cell. */
  for (struct link *l = c->density; l != NULL; l = l->next) {
    struct task *t = l->t;
    const struct cell *ci = t->ci;
    const struct cell *cj = t->cj;
1033
    scheduler_activate(s, t);
1034
1035
1036
1037
1038

    /* Set the correct sorting flags */
    if (t->type == task_type_pair) {
      if (!(ci->sorted & (1 << t->flags))) {
        atomic_or(&ci->sorts->flags, (1 << t->flags));
1039
        scheduler_activate(s, ci->sorts);
1040
1041
1042
      }
      if (!(cj->sorted & (1 << t->flags))) {
        atomic_or(&cj->sorts->flags, (1 << t->flags));
1043
        scheduler_activate(s, cj->sorts);
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
      }
    }

    /* Check whether there was too much particle motion */
    if (t->type == task_type_pair || t->type == task_type_sub_pair) {
      if (t->tight &&
          (max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
           ci->dx_max > space_maxreldx * ci->h_max ||
           cj->dx_max > space_maxreldx * cj->h_max))
        return 1;

#ifdef WITH_MPI
1056
      /* Activate the send/recv flags. */
1057
      if (ci->nodeID != engine_rank) {
1058
1059

        /* Activate the tasks to recv foreign cell ci's data. */
1060
1061
1062
        scheduler_activate(s, ci->recv_xv);
        scheduler_activate(s, ci->recv_rho);
        scheduler_activate(s, ci->recv_ti);
1063
1064
1065
1066

        /* Look for the local cell cj's send tasks. */
        struct link *l = NULL;
        for (l = cj->send_xv; l != NULL && l->t->cj->nodeID != ci->nodeID;
1067
1068
             l = l->next)
          ;
1069
        if (l == NULL) error("Missing link to send_xv task.");
1070
        scheduler_activate(s, l->t);
1071

Matthieu Schaller's avatar
Matthieu Schaller committed
1072
1073
1074
1075
        if (cj->super->drift)
          scheduler_activate(s, cj->super->drift);
        else
          error("Drift task missing !");
1076
1077

        for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
1078
1079
             l = l->next)
          ;
1080
        if (l == NULL) error("Missing link to send_rho task.");
1081
        scheduler_activate(s, l->t);
1082
1083

        for (l = cj->send_ti; l != NULL && l->t->cj->nodeID != ci->nodeID;
1084
1085
             l = l->next)
          ;
1086
        if (l == NULL) error("Missing link to send_ti task.");
1087
        scheduler_activate(s, l->t);
1088

1089
      } else if (cj->nodeID != engine_rank) {
1090
1091

        /* Activate the tasks to recv foreign cell cj's data. */
1092
1093
1094
        scheduler_activate(s, cj->recv_xv);
        scheduler_activate(s, cj->recv_rho);
        scheduler_activate(s, cj->recv_ti);
Matthieu Schaller's avatar
Matthieu Schaller committed
1095

1096
1097
1098
        /* Look for the local cell ci's send tasks. */
        struct link *l = NULL;
        for (l = ci->send_xv; l != NULL && l->t->cj->nodeID != cj->nodeID;
1099
1100
             l = l->next)
          ;
1101
        if (l == NULL) error("Missing link to send_xv task.");
1102
        scheduler_activate(s, l->t);
1103

Matthieu Schaller's avatar
Matthieu Schaller committed
1104
1105
1106
1107
        if (ci->super->drift)
          scheduler_activate(s, ci->super->drift);
        else
          error("Drift task missing !");
1108
1109

        for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
1110
1111
             l = l->next)
          ;
1112
        if (l == NULL) error("Missing link to send_rho task.");
1113
        scheduler_activate(s, l->t);
1114
1115

        for (l = ci->send_ti; l != NULL && l->t->cj->nodeID != cj->nodeID;
1116
1117
             l = l->next)
          ;
1118
        if (l == NULL) error("Missing link to send_ti task.");
1119
        scheduler_activate(s, l->t);
1120
1121
1122
1123
1124
1125
      }
#endif
    }
  }

  /* Unskip all the other task types. */
1126
  for (struct link *l = c->gradient; l != NULL; l = l->next)
1127
    scheduler_activate(s, l->t);
1128
  for (struct link *l = c->force; l != NULL; l = l->next)
1129
    scheduler_activate(s, l->t);
1130
  for (struct link *l = c->grav; l != NULL; l = l->next)
1131
1132
1133
1134
    scheduler_activate(s, l->t);
  if (c->extra_ghost != NULL) scheduler_activate(s, c->extra_ghost);
  if (c->ghost != NULL) scheduler_activate(s, c->ghost);
  if (c->init != NULL) scheduler_activate(s, c->init);
Matthieu Schaller's avatar
Matthieu Schaller committed
1135
  if (c->drift != NULL) scheduler_activate(s, c->drift);
1136
1137
  if (c->kick1 != NULL) scheduler_activate(s, c->kick1);
  if (c->kick2 != NULL) scheduler_activate(s, c->kick2);
1138
  if (c->timestep != NULL) scheduler_activate(s, c->timestep);
1139
1140
  if (c->cooling != NULL) scheduler_activate(s, c->cooling);
  if (c->sourceterms != NULL) scheduler_activate(s, c->sourceterms);
1141
1142
1143

  return 0;
}
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
/**
 * @brief Set the super-cell pointers for all cells in a hierarchy.
 *
 * @param c The top-level #cell to play with.
 * @param super Pointer to the deepest cell with tasks in this part of the tree.
 */
void cell_set_super(struct cell *c, struct cell *super) {

  /* Are we in a cell with some kind of self/pair task ? */
1154
  if (super == NULL && c->nr_tasks > 0) super = c;
1155
1156
1157
1158

  /* Set the super-cell */
  c->super = super;

1159
1160
  /* Recurse */
  if (c->split)
1161
1162
1163
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_set_super(c->progeny[k], super);
}
1164

1165
1166
1167
1168
1169
1170
/**
 * @brief Recursively drifts all particles and g-particles in a cell hierarchy.
 *
 * @param c The #cell.
 * @param e The #engine (to get ti_current).
 */
1171
void cell_drift(struct cell *c, const struct engine *e) {
1172
1173

  const double timeBase = e->timeBase;
1174
1175
  const integertime_t ti_old = c->ti_old;
  const integertime_t ti_current = e->ti_current;
1176
1177
1178
1179
1180
1181
1182
  struct part *const parts = c->parts;
  struct xpart *const xparts = c->xparts;
  struct gpart *const gparts = c->gparts;

  /* Drift from the last time the cell was drifted to the current time */
  const double dt = (ti_current - ti_old) * timeBase;
  float dx_max = 0.f, dx2_max = 0.f, h_max = 0.f;
1183

1184
  /* Check that we are actually going to move forward. */