cell.c 173 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "scheduler.h"
65
#include "space.h"
66
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
67
#include "stars.h"
68
#include "timers.h"
69
#include "tools.h"
70
#include "tracers.h"
71

72
73
74
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
75
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

163
164
165
166
167
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
168
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
169
170
  /* Number of cells in this subtree. */
  int count = 1;
171

172
173
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
174
    for (int k = 0; k < 8; k++)
175
176
177
178
179
180
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

181
/**
182
 * @brief Link the cells recursively to the given #part array.
183
184
185
186
187
188
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
189
int cell_link_parts(struct cell *c, struct part *parts) {
190
#ifdef SWIFT_DEBUG_CHECKS
191
192
193
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

194
  if (c->hydro.parts != NULL)
195
196
197
    error("Linking parts into a cell that was already linked");
#endif

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
214
 * @brief Link the cells recursively to the given #gpart array.
215
216
 *
 * @param c The #cell.
217
 * @param gparts The #gpart array.
218
219
220
 *
 * @return The number of particles linked.
 */
221
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
222
223
224
225
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

226
  if (c->grav.parts != NULL)
227
    error("Linking gparts into a cell that was already linked");
228
#endif
229

230
  c->grav.parts = gparts;
231
232
233
234
235
236
237
238
239
240
241

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
242
  return c->grav.count;
243
244
}

245
246
247
248
249
250
251
252
253
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
254
255
256
257
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

258
  if (c->stars.parts != NULL)
259
260
261
    error("Linking sparts into a cell that was already linked");
#endif

262
  c->stars.parts = sparts;
263
  c->stars.parts_rebuild = sparts;
264
265
266
267
268
269
270
271
272
273
274

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
275
  return c->stars.count;
276
277
}

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

311
312
313
314
315
316
317
318
319
320
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
321
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
322
323
#ifdef WITH_MPI

324
325
326
327
328
329
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
330
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
349
350
351
    return count;
  } else {
    return 0;
352
  }
353
354
355
356

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
357
358
}

359
360
361
362
363
364
365
366
367
368
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
369
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
370
371
#ifdef WITH_MPI

372
373
374
375
376
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

377
378
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
379

380
    /* Recursively attach the gparts */
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
397
398
399
    return count;
  } else {
    return 0;
400
  }
401
402
403
404

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
405
406
}

407
408
409
410
411
412
413
414
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
415
int cell_count_parts_for_tasks(const struct cell *c) {
416
417
#ifdef WITH_MPI

418
419
420
421
422
423
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
424
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
425
426
427
428
429
430
431
432
433
434
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
435
436
437
    return count;
  } else {
    return 0;
438
  }
439
440
441
442

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
443
444
}

445
446
447
448
449
450
451
452
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
453
int cell_count_gparts_for_tasks(const struct cell *c) {
454
455
#ifdef WITH_MPI

456
457
458
459
460
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

461
462
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
463
464
465
466
467
468
469
470
471
472
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
473
474
475
    return count;
  } else {
    return 0;
476
  }
477
478
479
480

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
481
482
}

483
484
485
486
487
488
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
489
490
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
491
492
493
 *
 * @return The number of packed cells.
 */
494
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
495
              const int with_gravity) {
496
497
#ifdef WITH_MPI

498
  /* Start by packing the data of the current cell. */
499
  pc->hydro.h_max = c->hydro.h_max;
500
  pc->stars.h_max = c->stars.h_max;
501
  pc->black_holes.h_max = c->black_holes.h_max;
502
503
504
505
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
506
  pc->stars.ti_end_min = c->stars.ti_end_min;
507
  pc->stars.ti_end_max = c->stars.ti_end_max;
508
509
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
510
511
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
512
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
513
  pc->stars.ti_old_part = c->stars.ti_old_part;
514
  pc->hydro.count = c->hydro.count;
515
516
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
517
  pc->black_holes.count = c->black_holes.count;
518
  pc->maxdepth = c->maxdepth;
519

520
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
521
  if (with_gravity) {
522
    const struct gravity_tensors *mp = c->grav.multipole;
523

524
525
526
527
528
529
530
531
532
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
533
534
  }

535
536
537
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
538
539

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
540
541
  int count = 1;
  for (int k = 0; k < 8; k++)
542
543
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
544
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
545
    } else {
546
      pc->progeny[k] = -1;
547
    }
548
549

  /* Return the number of packed cells used. */
550
  c->mpi.pcell_size = count;
551
  return count;
552
553
554
555
556

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
557
558
}

559
560
561
562
563
564
565
566
567
568
569
570
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
571
  tags[0] = c->mpi.tag;
572
573
574
575
576
577
578
579

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
580
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
581
582
583
584
585
586
587
588
589
590
591
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

592
593
594
595
596
597
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
598
599
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
600
601
602
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
603
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
604
                struct space *restrict s, const int with_gravity) {
605
606
607
#ifdef WITH_MPI

  /* Unpack the current pcell. */
608
  c->hydro.h_max = pc->hydro.h_max;
609
  c->stars.h_max = pc->stars.h_max;
610
  c->black_holes.h_max = pc->black_holes.h_max;
611
612
613
614
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
615
  c->stars.ti_end_min = pc->stars.ti_end_min;
616
  c->stars.ti_end_max = pc->stars.ti_end_max;
617
618
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
619
620
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
621
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
622
  c->stars.ti_old_part = pc->stars.ti_old_part;
623
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
624
  c->hydro.count = pc->hydro.count;
625
626
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
627
  c->black_holes.count = pc->black_holes.count;
628
629
  c->maxdepth = pc->maxdepth;

630
631
632
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
633

634
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
635
  if (with_gravity) {
636
    struct gravity_tensors *mp = c->grav.multipole;
637

638
639
640
641
642
643
644
645
646
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
647
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
648

649
650
651
652
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
653
  c->split = 0;
654
655
656
657
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
658
      temp->hydro.count = 0;
659
660
      temp->grav.count = 0;
      temp->stars.count = 0;
661
662
663
664
665
666
667
668
669
670
671
672
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
673
      temp->hydro.dx_max_part = 0.f;
674
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
675
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
676
      temp->stars.dx_max_sort = 0.f;
677
      temp->black_holes.dx_max_part = 0.f;
678
679
680
681
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
682
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
683
684
685
    }

  /* Return the total number of unpacked cells. */
686
  c->mpi.pcell_size = count;
687
688
689
690
691
692
693
694
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

695
696
697
698
699
700
701
702
703
704
705
706
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
707
  c->mpi.tag = tags[0];
708
709
710
711
712
713
714
715
716
717
718

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
719
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
720
721
722
723
724
725
726
727
728
729
730
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

731
732
733
734
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
735
 * @param pcells (output) The end-of-timestep information we pack into
736
737
738
 *
 * @return The number of packed cells.
 */
739
740
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
741
742
#ifdef WITH_MPI

743
  /* Pack this cell's data. */
744
745
746
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
747

748
749
750
751
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
752
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
753
754
755
756
    }

  /* Return the number of packed values. */
  return count;
757
758
759
760
761

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
762
763
}

764
765
766
767
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
768
 * @param pcells The end-of-timestep information to unpack
769
770
771
 *
 * @return The number of cells created.
 */
772
773
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
774
775
#ifdef WITH_MPI

776
  /* Unpack this cell's data. */
777
778
779
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
780

781
782
783
784
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
916
917
918
    }

  /* Return the number of packed values. */
919
  return count;
920
921
922
923
924

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
925
}
926

927
928
929
930
931
932
933
934
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
935
936
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
969
970
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

995
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
996
997
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
998
999
1000
1001
1002
1003
1004
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1005
                         struct gravity_tensors *restrict pcells) {
1006
1007
1008
#ifdef WITH_MPI

  /* Pack this cell's data. */
1009
  pcells[0] = *c->grav.multipole;
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1036
                           struct gravity_tensors *restrict pcells) {
1037
1038
1039
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1040
  *c->grav.multipole = pcells[0];
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1142
/**
1143
 * @brief Lock a cell for access to its array of #part and hold its parents.
1144
1145
 *
 * @param c The #cell.
1146
 * @return 0 on success, 1 on failure
1147
 */
1148
1149
1150
1151
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1152
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1153
1154
1155
1156
1157
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1158
  if (c->hydro.hold) {
1159
    /* Unlock this cell. */
1160
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1161
1162
1163
1164
1165
1166
1167

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1168
  struct cell *finger;
1169
1170
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1171
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1172
1173

    /* Increment the hold. */
1174
    atomic_inc(&finger->hydro.hold);
1175
1176

    /* Unlock the cell. */
1177
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1189
1190
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1191
      atomic_dec(&finger2->hydro.hold);
1192
1193

    /* Unlock this cell. */
1194
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1195
1196
1197
1198
1199
1200
1201

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1202
1203
1204
1205
1206
1207
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1208
1209
1210
1211
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1212
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1213
1214
1215
1216
1217
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1218
  if (c->grav.phold) {
1219
    /* Unlock this cell. */
1220
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1221
1222
1223
1224
1225
1226
1227

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1228
  struct cell *finger;
1229
1230
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1231
    if (lock_trylock(&finger->grav.plock) != 0) break;
1232
1233

    /* Increment the hold. */
1234
    atomic_inc(&finger->grav.phold);
1235
1236

    /* Unlock the cell. */
1237
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1249
1250
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1251
      atomic_dec(&finger2->grav.phold);
1252
1253

    /* Unlock this cell. */
1254
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1255
1256
1257
1258
1259
1260

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1272
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1273
1274
1275
1276
1277
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1278
  if (c->grav.mhold) {
1279
    /* Unlock this cell. */
1280
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1291
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1292
1293

    /* Increment the hold. */
1294
    atomic_inc(&finger->grav.mhold);
1295
1296

    /* Unlock the cell. */
1297
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1311
      atomic_dec(&finger2->grav.mhold);
1312
1313

    /* Unlock this cell. */
1314
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1315
1316
1317
1318
1319
1320
1321

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1332
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1333
1334
1335
1336
1337
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1338
  if (c->stars.hold) {
1339
    /* Unlock this cell. */
1340
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1351
    if (lock_trylock(&finger->stars.lock) != 0) break;
1352
1353

    /* Increment the hold. */
1354
    atomic_inc(&finger->stars.hold);
1355
1356

    /* Unlock the cell. */
1357
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1371
      atomic_dec(&finger2->stars.hold);
1372
1373

    /* Unlock this cell. */
1374
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1375
1376
1377
1378
1379
1380
1381

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}