cell.c 74.2 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "drift.h"
53
#include "engine.h"
54
#include "error.h"
55
#include "gravity.h"
56
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
57
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
58
#include "memswap.h"
59
#include "minmax.h"
60
#include "scheduler.h"
61
62
#include "space.h"
#include "timers.h"
63

64
65
66
/* Global variables. */
int cell_next_tag = 0;

67
68
69
70
71
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
72
int cell_getsize(struct cell *c) {
73

Pedro Gonnet's avatar
Pedro Gonnet committed
74
75
  /* Number of cells in this subtree. */
  int count = 1;
76

77
78
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
79
    for (int k = 0; k < 8; k++)
80
81
82
83
84
85
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

86
/**
87
 * @brief Link the cells recursively to the given #part array.
88
89
90
91
92
93
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
94
int cell_link_parts(struct cell *c, struct part *parts) {
95

96
97
98
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
99
100
101
102
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
103
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
104
105
    }
  }
106

107
  /* Return the total number of linked particles. */
108
109
  return c->count;
}
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

161
162
163
164
165
166
167
168
169
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
170
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
171

172
173
#ifdef WITH_MPI

174
175
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
176
177
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
178
179
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
180
  pc->count = c->count;
181
  pc->gcount = c->gcount;
182
  pc->scount = c->scount;
183
184
185
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
186
187
  int count = 1;
  for (int k = 0; k < 8; k++)
188
189
190
191
192
193
194
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
195
196
  c->pcell_size = count;
  return count;
197
198
199
200
201

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
202
203
}

204
205
206
207
208
209
210
211
212
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
213
214
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_gpart = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

272
273
274
275
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
276
 * @param pcells (output) The end-of-timestep information we pack into
277
278
279
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
280
281
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
282

283
284
#ifdef WITH_MPI

285
  /* Pack this cell's data. */
286
287
288
  pcells[0].ti_end_min = c->ti_end_min;
  pcells[0].dx_max_part = c->dx_max_part;
  pcells[0].dx_max_gpart = c->dx_max_gpart;
289

290
291
292
293
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
294
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
295
296
297
298
    }

  /* Return the number of packed values. */
  return count;
299
300
301
302
303

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
304
305
}

306
307
308
309
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
310
 * @param pcells The end-of-timestep information to unpack
311
312
313
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
314
315
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
316

317
318
#ifdef WITH_MPI

319
  /* Unpack this cell's data. */
Matthieu Schaller's avatar
Matthieu Schaller committed
320
  c->ti_end_min = pcells[0].ti_end_min;
321
322
  c->dx_max_part = pcells[0].dx_max_part;
  c->dx_max_gpart = pcells[0].dx_max_gpart;
323

324
325
326
327
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
328
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
329
330
331
    }

  /* Return the number of packed values. */
332
  return count;
333
334
335
336
337

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
338
}
339

340
/**
341
 * @brief Lock a cell for access to its array of #part and hold its parents.
342
343
 *
 * @param c The #cell.
344
 * @return 0 on success, 1 on failure
345
 */
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
368
  struct cell *finger;
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
391
392
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
393
      atomic_dec(&finger2->hold);
394
395
396
397
398
399
400
401
402
403

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

404
405
406
407
408
409
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
432
  struct cell *finger;
433
434
435
436
437
438
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
439
    atomic_inc(&finger->ghold);
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
455
456
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
457
      atomic_dec(&finger2->ghold);
458
459
460
461
462
463
464
465
466

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

596
/**
597
 * @brief Unlock a cell's parents for access to #part array.
598
599
600
 *
 * @param c The #cell.
 */
601
602
603
604
605
606
607
608
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
609
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
610
    atomic_dec(&finger->hold);
611
612
613
614

  TIMER_TOC(timer_locktree);
}

615
616
617
618
619
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
620
621
622
623
624
625
626
627
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
628
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
629
    atomic_dec(&finger->ghold);
630
631
632
633

  TIMER_TOC(timer_locktree);
}

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

672
673
674
675
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
676
677
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
678
679
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
680
681
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
682
683
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
684
685
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
686
 */
687
688
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
689
                struct cell_buff *gbuff) {
690

691
  const int count = c->count, gcount = c->gcount, scount = c->scount;
692
693
694
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
695
  struct spart *sparts = c->sparts;
696
697
698
699
700
701
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

702
703
704
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
705
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
706
        buff[k].x[2] != parts[k].x[2])
707
708
      error("Inconsistent buff contents.");
  }
709
710
711
712
713
714
715
716
717
718
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
719
#endif /* SWIFT_DEBUG_CHECKS */
720
721
722

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
723
724
    const int bid = (buff[k].x[0] > pivot[0]) * 4 +
                    (buff[k].x[1] > pivot[1]) * 2 + (buff[k].x[2] > pivot[2]);
725
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
726
    buff[k].ind = bid;
727
  }
728

729
730
731
732
733
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
734
735
  }

736
737
738
739
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
740
      int bid = buff[k].ind;
741
742
743
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
744
        struct cell_buff temp_buff = buff[k];
745
746
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
747
          while (buff[j].ind == bid) {
748
749
750
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
751
752
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
753
754
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
755
756
757
        }
        parts[k] = part;
        xparts[k] = xpart;
758
        buff[k] = temp_buff;
759
      }
760
      bucket_count[bid]++;
761
762
763
764
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
765
  for (int k = 0; k < 8; k++) {
766
767
768
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
769
770
771
  }

  /* Re-link the gparts. */
772
773
  if (count > 0 && gcount > 0)
    part_relink_gparts_to_parts(parts, count, parts_offset);
774

775
#ifdef SWIFT_DEBUG_CHECKS
776
777
778
779
780
781
782
783
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

784
  /* Verify that _all_ the parts have been assigned to a cell. */
785
786
787
788
789
790
791
792
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
793
794

  /* Verify a few sub-cells. */
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
  for (int k = 0; k < c->progeny[3]->count; k++)
    if (c->progeny[3]->parts[k].x[0] > pivot[0] ||
        c->progeny[3]->parts[k].x[1] <= pivot[1] ||
        c->progeny[3]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
    if (c->progeny[4]->parts[k].x[0] <= pivot[0] ||
        c->progeny[4]->parts[k].x[1] > pivot[1] ||
        c->progeny[4]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
    if (c->progeny[5]->parts[k].x[0] <= pivot[0] ||
        c->progeny[5]->parts[k].x[1] > pivot[1] ||
        c->progeny[5]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
    if (c->progeny[6]->parts[k].x[0] <= pivot[0] ||
        c->progeny[6]->parts[k].x[1] <= pivot[1] ||
        c->progeny[6]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
    if (c->progeny[7]->parts[k].x[0] <= pivot[0] ||
        c->progeny[7]->parts[k].x[1] <= pivot[1] ||
        c->progeny[7]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=7).");
835
#endif
836

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Re-link the gparts. */
  if (scount > 0 && gcount > 0)
888
    part_relink_gparts_to_sparts(sparts, scount, sparts_offset);
889
890

  /* Finally, do the same song and dance for the gparts. */
891
892
893
894
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
895
896
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
897
    bucket_count[bid]++;
898
    gbuff[k].ind = bid;
899
  }
900
901
902
903
904
905

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
906
907
  }

908
909
910
911
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
912
      int bid = gbuff[k].ind;
913
914
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
915
        struct cell_buff temp_buff = gbuff[k];
916
917
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
918
          while (gbuff[j].ind == bid) {
919
920
921
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
922
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
923
924
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
          bid = temp_buff.ind;
925
926
        }
        gparts[k] = gpart;
927
        gbuff[k] = temp_buff;
928
      }
929
      bucket_count[bid]++;
930
931
932
933
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
934
  for (int k = 0; k < 8; k++) {
935
936
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
937
938
939
  }

  /* Re-link the parts. */
940
  if (count > 0 && gcount > 0)
941
    part_relink_parts_to_gparts(gparts, gcount, parts - parts_offset);
942
943
944
945

  /* Re-link the sparts. */
  if (scount > 0 && gcount > 0)
    part_relink_sparts_to_gparts(gparts, gcount, sparts - sparts_offset);
946
}
947

948
949
950
951
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
952
953
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
954
955
 *
 * @param c The cell.
956
 * @param treated Has the cell already been sanitized at this level ?
957
 */
958
void cell_sanitize(struct cell *c, int treated) {
959
960
961

  const int count = c->count;
  struct part *parts = c->parts;
962
  float h_max = 0.f;
963

964
965
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
966

967
968
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
969

970
971
972
973
974
975
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
976

977
978
  /* Recurse and gather the new h_max values */
  if (c->split) {
979

980
981
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
982

983
984
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
985

986
987
988
989
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
990
991
  } else {

992
993
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
994
  }
995
996
997

  /* Record the change */
  c->h_max = h_max;
998
999
}

1000
/**
1001
 * @brief Converts hydro quantities to a valid state after the initial density
1002
 * calculation
1003
1004
1005
1006
1007
1008
1009
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
1010
  struct xpart *xp = c->xparts;
1011
1012

  for (int i = 0; i < c->count; ++i) {
1013
    hydro_convert_quantities(&p[i], &xp[i]);
1014
1015
1016
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1017
1018
1019
1020
1021
1022
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1023
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1024
  c->density = NULL;
1025
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1026
  c->force = NULL;
1027
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1028
}
1029

1030
/**
1031
 * @brief Checks that the #part in a cell are at the
1032
 * current point in time
1033
1034
1035
1036
1037
1038
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1039
void cell_check_part_drift_point(struct cell *c, void *data) {
1040

1041
1042
#ifdef SWIFT_DEBUG_CHECKS

1043
  const integertime_t ti_drift = *(integertime_t *)data;
1044

1045
  /* Only check local cells */
1046
  if (c->nodeID != engine_rank) return;
1047

1048
1049
1050
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1051

1052
1053
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1054
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1055
            c->parts[i].ti_drift, ti_drift);
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1082

1083
1084
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1085
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1086
            c->gparts[i].ti_drift, ti_drift);
1087

1088
1089
1090
1091
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1092
1093
1094
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1095
1096
}

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1117
1118
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1119
1120
1121
1122
1123
1124

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1142
1143
1144
1145
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1146
 * @param ti_current The current integer time.
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
    c->multipole->CoM[0] = CoM[0] / mass;
    c->multipole->CoM[1] = CoM[1] / mass;
    c->multipole->CoM[2] = CoM[2] / mass;

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
    const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                          ? c->multipole->CoM[2] - c->loc[2]
                          : c->loc[2] + c->width[2] - c->multipole->CoM[2];

    /* Take minimum of both limits */
    c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));

  } else {

    if (c->gcount > 0) {
      gravity_P2M(c->multipole, c->gparts, c->gcount);
      const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
                            ? c->multipole->CoM[0] - c->loc[0]
                            : c->loc[0] + c->width[0] - c->multipole->CoM[0];
      const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
                            ? c->multipole->CoM[1] - c->loc[1]
                            : c->loc[1] + c->width[1] - c->multipole->CoM[1];
      const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
                            ? c->multipole->CoM[2] - c->loc[2]
                            : c->loc[2] + c->width[2] - c->multipole->CoM[2];
      c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
    } else {
      gravity_multipole_init(&c->multipole->m_pole);
      c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
      c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
      c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
      c->multipole->r_max = 0.;
    }
  }

  c->ti_old_multipole = ti_current;
}

1232
1233
1234
1235
1236
1237
1238
1239
1240
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

1241
#ifdef SWIFT_DEBUG_CHECKS
1242
  struct gravity_tensors ma;
1243
  const double tolerance = 1e-3; /* Relative */
1244

1245
1246
  return;

1247
1248
1249
1250
  /* First recurse */
  if (c->split)
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) cell_check_multipole(c->progeny[k], NULL);
1251
1252
1253
1254

  if (c->gcount > 0) {

    /* Brute-force calculation */
1255
    gravity_P2M(&ma, c->gparts, c->gcount);
1256
1257

    /* Now  compare the multipole expansion */
1258
    if (!gravity_multipole_equal(&ma, c->multipole, tolerance)) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1259
1260
      message("Multipoles are not equal at depth=%d! tol=%f", c->depth,
              tolerance);
1261
      message("Correct answer:");
1262
      gravity_multipole_print(&ma.m_pole);
1263
      message("Recursive multipole:");
1264
      gravity_multipole_print(&c->multipole->m_pole);
1265
1266
      error("Aborting");
    }
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

    /* Check that the upper limit of r_max is good enough */
    if (!(c->multipole->r_max >= ma.r_max)) {
      error("Upper-limit r_max=%e too small. Should be >=%e.",
            c->multipole->r_max, ma.r_max);
    } else if (c->multipole->r_max * c->multipole->r_max >
               3. * c->width[0] * c->width[0]) {
      error("r_max=%e larger than cell diagonal %e.", c->multipole->r_max,
            sqrt(3. * c->width[0] * c->width[0]));
    }
1277
  }
1278
1279
1280
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1281
1282
}

1283
/**
1284
 * @brief Frees up the memory allocated for this #cell.
1285
 *
1286
 * @param c The #cell.
1287
 */
1288
1289
void cell_clean(struct cell *c) {

1290
1291
1292
1293
  for (int i = 0; i < 13; i++)
    if (c->sort[i] != NULL) {
      free(c->sort[i]);
      c->sort[i] = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1294
    }
1295
1296
1297
1298

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);