cell.c 168 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "scheduler.h"
65
#include "space.h"
66
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
67
#include "stars.h"
68
#include "timers.h"
69
#include "tools.h"
70
#include "tracers.h"
71

72
73
74
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
75
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

163
164
165
166
167
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
168
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
169
170
  /* Number of cells in this subtree. */
  int count = 1;
171

172
173
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
174
    for (int k = 0; k < 8; k++)
175
176
177
178
179
180
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

181
/**
182
 * @brief Link the cells recursively to the given #part array.
183
184
185
186
187
188
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
189
int cell_link_parts(struct cell *c, struct part *parts) {
190
#ifdef SWIFT_DEBUG_CHECKS
191
192
193
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

194
  if (c->hydro.parts != NULL)
195
196
197
    error("Linking parts into a cell that was already linked");
#endif

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
214
 * @brief Link the cells recursively to the given #gpart array.
215
216
 *
 * @param c The #cell.
217
 * @param gparts The #gpart array.
218
219
220
 *
 * @return The number of particles linked.
 */
221
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
222
223
224
225
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

226
  if (c->grav.parts != NULL)
227
    error("Linking gparts into a cell that was already linked");
228
#endif
229

230
  c->grav.parts = gparts;
231
232
233
234
235
236
237
238
239
240
241

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
242
  return c->grav.count;
243
244
}

245
246
247
248
249
250
251
252
253
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
254
255
256
257
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

258
  if (c->stars.parts != NULL)
259
260
261
    error("Linking sparts into a cell that was already linked");
#endif

262
  c->stars.parts = sparts;
263
264
265
266
267
268
269
270
271
272
273

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
274
  return c->stars.count;
275
276
}

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

310
311
312
313
314
315
316
317
318
319
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
320
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
321
322
#ifdef WITH_MPI

323
324
325
326
327
328
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
329
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
348
349
350
    return count;
  } else {
    return 0;
351
  }
352
353
354
355

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
356
357
}

358
359
360
361
362
363
364
365
366
367
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
368
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
369
370
#ifdef WITH_MPI

371
372
373
374
375
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

376
377
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
378

379
    /* Recursively attach the gparts */
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
396
397
398
    return count;
  } else {
    return 0;
399
  }
400
401
402
403

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
404
405
}

406
407
408
409
410
411
412
413
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
414
int cell_count_parts_for_tasks(const struct cell *c) {
415
416
#ifdef WITH_MPI

417
418
419
420
421
422
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
423
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
424
425
426
427
428
429
430
431
432
433
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
434
435
436
    return count;
  } else {
    return 0;
437
  }
438
439
440
441

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
442
443
}

444
445
446
447
448
449
450
451
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
452
int cell_count_gparts_for_tasks(const struct cell *c) {
453
454
#ifdef WITH_MPI

455
456
457
458
459
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

460
461
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
462
463
464
465
466
467
468
469
470
471
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
472
473
474
    return count;
  } else {
    return 0;
475
  }
476
477
478
479

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
480
481
}

482
483
484
485
486
487
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
488
489
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
490
491
492
 *
 * @return The number of packed cells.
 */
493
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
494
              const int with_gravity) {
495
496
#ifdef WITH_MPI

497
  /* Start by packing the data of the current cell. */
498
  pc->hydro.h_max = c->hydro.h_max;
499
  pc->stars.h_max = c->stars.h_max;
500
  pc->black_holes.h_max = c->black_holes.h_max;
501
502
503
504
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
505
  pc->stars.ti_end_min = c->stars.ti_end_min;
506
  pc->stars.ti_end_max = c->stars.ti_end_max;
507
508
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
509
510
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
511
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
512
  pc->stars.ti_old_part = c->stars.ti_old_part;
513
  pc->hydro.count = c->hydro.count;
514
515
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
516
  pc->black_holes.count = c->black_holes.count;
517
  pc->maxdepth = c->maxdepth;
518

519
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
520
  if (with_gravity) {
521
    const struct gravity_tensors *mp = c->grav.multipole;
522

523
524
525
526
527
528
529
530
531
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
532
533
  }

534
535
536
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
537
538

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
539
540
  int count = 1;
  for (int k = 0; k < 8; k++)
541
542
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
543
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
544
    } else {
545
      pc->progeny[k] = -1;
546
    }
547
548

  /* Return the number of packed cells used. */
549
  c->mpi.pcell_size = count;
550
  return count;
551
552
553
554
555

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
556
557
}

558
559
560
561
562
563
564
565
566
567
568
569
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
570
  tags[0] = c->mpi.tag;
571
572
573
574
575
576
577
578

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
579
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
580
581
582
583
584
585
586
587
588
589
590
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

591
592
593
594
595
596
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
597
598
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
599
600
601
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
602
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
603
                struct space *restrict s, const int with_gravity) {
604
605
606
#ifdef WITH_MPI

  /* Unpack the current pcell. */
607
  c->hydro.h_max = pc->hydro.h_max;
608
  c->stars.h_max = pc->stars.h_max;
609
  c->black_holes.h_max = pc->black_holes.h_max;
610
611
612
613
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
614
  c->stars.ti_end_min = pc->stars.ti_end_min;
615
  c->stars.ti_end_max = pc->stars.ti_end_max;
616
617
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
618
619
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
620
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
621
  c->stars.ti_old_part = pc->stars.ti_old_part;
622
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
623
  c->hydro.count = pc->hydro.count;
624
625
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
626
  c->black_holes.count = pc->black_holes.count;
627
628
  c->maxdepth = pc->maxdepth;

629
630
631
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
632

633
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
634
  if (with_gravity) {
635
    struct gravity_tensors *mp = c->grav.multipole;
636

637
638
639
640
641
642
643
644
645
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
646
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
647

648
649
650
651
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
652
  c->split = 0;
653
654
655
656
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
657
      temp->hydro.count = 0;
658
659
      temp->grav.count = 0;
      temp->stars.count = 0;
660
661
662
663
664
665
666
667
668
669
670
671
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
672
      temp->hydro.dx_max_part = 0.f;
673
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
674
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
675
      temp->stars.dx_max_sort = 0.f;
676
      temp->black_holes.dx_max_part = 0.f;
677
678
679
680
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
681
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
682
683
684
    }

  /* Return the total number of unpacked cells. */
685
  c->mpi.pcell_size = count;
686
687
688
689
690
691
692
693
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

694
695
696
697
698
699
700
701
702
703
704
705
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
706
  c->mpi.tag = tags[0];
707
708
709
710
711
712
713
714
715
716
717

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
718
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
719
720
721
722
723
724
725
726
727
728
729
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

730
731
732
733
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
734
 * @param pcells (output) The end-of-timestep information we pack into
735
736
737
 *
 * @return The number of packed cells.
 */
738
739
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
740
741
#ifdef WITH_MPI

742
  /* Pack this cell's data. */
743
744
745
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
746

747
748
749
750
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
751
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
752
753
754
755
    }

  /* Return the number of packed values. */
  return count;
756
757
758
759
760

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
761
762
}

763
764
765
766
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
767
 * @param pcells The end-of-timestep information to unpack
768
769
770
 *
 * @return The number of cells created.
 */
771
772
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
773
774
#ifdef WITH_MPI

775
  /* Unpack this cell's data. */
776
777
778
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
779

780
781
782
783
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
915
916
917
    }

  /* Return the number of packed values. */
918
  return count;
919
920
921
922
923

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
924
}
925

926
927
928
929
930
931
932
933
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
934
935
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
968
969
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

994
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
995
996
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
997
998
999
1000
1001
1002
1003
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1004
                         struct gravity_tensors *restrict pcells) {
1005
1006
1007
#ifdef WITH_MPI

  /* Pack this cell's data. */
1008
  pcells[0] = *c->grav.multipole;
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1035
                           struct gravity_tensors *restrict pcells) {
1036
1037
1038
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1039
  *c->grav.multipole = pcells[0];
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1057
/**
1058
 * @brief Lock a cell for access to its array of #part and hold its parents.
1059
1060
 *
 * @param c The #cell.
1061
 * @return 0 on success, 1 on failure
1062
 */
1063
1064
1065
1066
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1067
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1068
1069
1070
1071
1072
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1073
  if (c->hydro.hold) {
1074
    /* Unlock this cell. */
1075
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1076
1077
1078
1079
1080
1081
1082

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1083
  struct cell *finger;
1084
1085
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1086
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1087
1088

    /* Increment the hold. */
1089
    atomic_inc(&finger->hydro.hold);
1090
1091

    /* Unlock the cell. */
1092
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1104
1105
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1106
      atomic_dec(&finger2->hydro.hold);
1107
1108

    /* Unlock this cell. */
1109
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1110
1111
1112
1113
1114
1115
1116

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1117
1118
1119
1120
1121
1122
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1123
1124
1125
1126
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1127
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1128
1129
1130
1131
1132
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1133
  if (c->grav.phold) {
1134
    /* Unlock this cell. */
1135
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1136
1137
1138
1139
1140
1141
1142

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1143
  struct cell *finger;
1144
1145
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1146
    if (lock_trylock(&finger->grav.plock) != 0) break;
1147
1148

    /* Increment the hold. */
1149
    atomic_inc(&finger->grav.phold);
1150
1151

    /* Unlock the cell. */
1152
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1164
1165
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1166
      atomic_dec(&finger2->grav.phold);
1167
1168

    /* Unlock this cell. */
1169
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1170
1171
1172
1173
1174
1175

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1176

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1187
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1188
1189
1190
1191
1192
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1193
  if (c->grav.mhold) {
1194
    /* Unlock this cell. */
1195
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1206
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1207
1208

    /* Increment the hold. */
1209
    atomic_inc(&finger->grav.mhold);
1210
1211

    /* Unlock the cell. */
1212
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1226
      atomic_dec(&finger2->grav.mhold);
1227
1228

    /* Unlock this cell. */
1229
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1230
1231
1232
1233
1234
1235
1236

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1247
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1248
1249
1250
1251
1252
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1253
  if (c->stars.hold) {
1254
    /* Unlock this cell. */
1255
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1266
    if (lock_trylock(&finger->stars.lock) != 0) break;
1267
1268

    /* Increment the hold. */
1269
    atomic_inc(&finger->stars.hold);
1270
1271

    /* Unlock the cell. */
1272
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1286
      atomic_dec(&finger2->stars.hold);
1287
1288

    /* Unlock this cell. */
1289
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1290
1291
1292
1293
1294
1295
1296

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1297
/**
1298
 * @brief Unlock a cell's parents for access to #part array.
1299
1300
1301
 *
 * @param c The #cell.
 */
1302
1303
1304
1305
void cell_unlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1306
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1307
1308

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1309
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1310
    atomic_dec(&finger->hydro.hold);
1311
1312
1313
1314

  TIMER_TOC(timer_locktree);
}

1315
1316
1317
1318
1319
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1320
1321
1322
1323
void cell_gunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1324
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1325
1326

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1327
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)