cell.c 202 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "pressure_floor.h"
65
#include "scheduler.h"
66
#include "space.h"
67
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
68
#include "star_formation.h"
Loic Hausammann's avatar
Loic Hausammann committed
69
#include "stars.h"
70
#include "task_order.h"
71
#include "timers.h"
72
#include "tools.h"
73
#include "tracers.h"
74

75
76
extern int engine_star_resort_task_depth;

77
78
79
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
80
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

168
169
170
171
172
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
173
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
174
175
  /* Number of cells in this subtree. */
  int count = 1;
176

177
178
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
179
    for (int k = 0; k < 8; k++)
180
181
182
183
184
185
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

186
/**
187
 * @brief Link the cells recursively to the given #part array.
188
189
190
191
192
193
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
194
int cell_link_parts(struct cell *c, struct part *parts) {
195
#ifdef SWIFT_DEBUG_CHECKS
196
197
198
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

199
  if (c->hydro.parts != NULL)
200
201
202
    error("Linking parts into a cell that was already linked");
#endif

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
219
 * @brief Link the cells recursively to the given #gpart array.
220
221
 *
 * @param c The #cell.
222
 * @param gparts The #gpart array.
223
224
225
 *
 * @return The number of particles linked.
 */
226
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
227
228
229
230
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

231
  if (c->grav.parts != NULL)
232
    error("Linking gparts into a cell that was already linked");
233
#endif
234

235
  c->grav.parts = gparts;
236
237
238
239
240
241
242
243
244
245
246

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
247
  return c->grav.count;
248
249
}

250
251
252
253
254
255
256
257
258
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
259
260
261
262
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

263
  if (c->stars.parts != NULL)
264
265
266
    error("Linking sparts into a cell that was already linked");
#endif

267
  c->stars.parts = sparts;
268
  c->stars.parts_rebuild = sparts;
269
270
271
272
273
274
275
276
277
278
279

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
280
  return c->stars.count;
281
282
}

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

316
317
318
319
320
321
322
323
324
325
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
326
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
327
328
#ifdef WITH_MPI

329
330
331
332
333
334
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
335
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
354
355
356
    return count;
  } else {
    return 0;
357
  }
358
359
360
361

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
362
363
}

364
365
366
367
368
369
370
371
372
373
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
374
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
375
376
#ifdef WITH_MPI

377
378
379
380
381
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

382
383
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
384

385
    /* Recursively attach the gparts */
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
402
403
404
    return count;
  } else {
    return 0;
405
  }
406
407
408
409

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
410
411
}

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/**
 * @brief Recursively nullify all the particle pointers in a cell hierarchy.
 *
 * Should only be used on foreign cells!
 *
 * This will make any task or action running on these cells likely crash.
 * Recreating the foreign links will be necessary.
 *
 * @param c The #cell to act on.
 */
void cell_unlink_foreign_particles(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Unlinking foreign particles in a local cell!");
#endif

  c->grav.parts = NULL;
  c->hydro.parts = NULL;
  c->stars.parts = NULL;
  c->black_holes.parts = NULL;

  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        cell_unlink_foreign_particles(c->progeny[k]);
      }
    }
  }
}

443
444
445
446
447
448
449
450
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
451
int cell_count_parts_for_tasks(const struct cell *c) {
452
453
#ifdef WITH_MPI

454
455
456
457
458
459
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
460
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
461
462
463
464
465
466
467
468
469
470
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
471
472
473
    return count;
  } else {
    return 0;
474
  }
475
476
477
478

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
479
480
}

481
482
483
484
485
486
487
488
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
489
int cell_count_gparts_for_tasks(const struct cell *c) {
490
491
#ifdef WITH_MPI

492
493
494
495
496
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

497
498
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
499
500
501
502
503
504
505
506
507
508
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
509
510
511
    return count;
  } else {
    return 0;
512
  }
513
514
515
516

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
517
518
}

519
520
521
522
523
524
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
525
526
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
527
528
529
 *
 * @return The number of packed cells.
 */
530
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
531
              const int with_gravity) {
532
533
#ifdef WITH_MPI

534
  /* Start by packing the data of the current cell. */
535
  pc->hydro.h_max = c->hydro.h_max;
536
  pc->stars.h_max = c->stars.h_max;
537
  pc->black_holes.h_max = c->black_holes.h_max;
538
539
540
541
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
542
  pc->stars.ti_end_min = c->stars.ti_end_min;
543
  pc->stars.ti_end_max = c->stars.ti_end_max;
544
545
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
546
547
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
548
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
549
  pc->stars.ti_old_part = c->stars.ti_old_part;
550
  pc->hydro.count = c->hydro.count;
551
552
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
553
  pc->black_holes.count = c->black_holes.count;
554
  pc->maxdepth = c->maxdepth;
555

556
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
557
  if (with_gravity) {
558
    const struct gravity_tensors *mp = c->grav.multipole;
559

560
561
562
563
564
565
566
567
568
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
569
570
  }

571
572
573
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
574
575

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
576
577
  int count = 1;
  for (int k = 0; k < 8; k++)
578
579
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
580
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
581
    } else {
582
      pc->progeny[k] = -1;
583
    }
584
585

  /* Return the number of packed cells used. */
586
  c->mpi.pcell_size = count;
587
  return count;
588
589
590
591
592

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
593
594
}

595
596
597
598
599
600
601
602
603
604
605
606
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
607
  tags[0] = c->mpi.tag;
608
609
610
611
612
613
614
615

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
616
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
617
618
619
620
621
622
623
624
625
626
627
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
void cell_pack_part_swallow(const struct cell *c,
                            struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  const struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    data[i] = parts[i].black_holes_data;
  }
}

void cell_unpack_part_swallow(struct cell *c,
                              const struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    parts[i].black_holes_data = data[i];
  }
}

650
651
652
653
654
655
656
void cell_pack_bpart_swallow(const struct cell *c,
                             struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  const struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
657
    data[i] = bparts[i].merger_data;
658
659
660
661
662
663
664
665
666
667
668
669
670
671
  }
}

void cell_unpack_bpart_swallow(struct cell *c,
                               const struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
    bparts[i].merger_data = data[i];
  }
}

672
673
674
675
676
677
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
678
679
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
680
681
682
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
683
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
684
                struct space *restrict s, const int with_gravity) {
685
686
687
#ifdef WITH_MPI

  /* Unpack the current pcell. */
688
  c->hydro.h_max = pc->hydro.h_max;
689
  c->stars.h_max = pc->stars.h_max;
690
  c->black_holes.h_max = pc->black_holes.h_max;
691
692
693
694
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
695
  c->stars.ti_end_min = pc->stars.ti_end_min;
696
  c->stars.ti_end_max = pc->stars.ti_end_max;
697
698
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
699
700
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
701
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
702
  c->stars.ti_old_part = pc->stars.ti_old_part;
703
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
704
  c->hydro.count = pc->hydro.count;
705
706
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
707
  c->black_holes.count = pc->black_holes.count;
708
709
  c->maxdepth = pc->maxdepth;

710
711
712
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
713

714
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
715
  if (with_gravity) {
716
    struct gravity_tensors *mp = c->grav.multipole;
717

718
719
720
721
722
723
724
725
726
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
727
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
728

729
730
731
732
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
733
  c->split = 0;
734
735
736
737
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
738
      temp->hydro.count = 0;
739
740
      temp->grav.count = 0;
      temp->stars.count = 0;
741
742
743
744
745
746
747
748
749
750
751
752
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
753
      temp->hydro.dx_max_part = 0.f;
754
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
755
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
756
      temp->stars.dx_max_sort = 0.f;
757
      temp->black_holes.dx_max_part = 0.f;
758
759
760
761
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
762
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
763
764
765
    }

  /* Return the total number of unpacked cells. */
766
  c->mpi.pcell_size = count;
767
768
769
770
771
772
773
774
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

775
776
777
778
779
780
781
782
783
784
785
786
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
787
  c->mpi.tag = tags[0];
788
789
790
791
792
793
794
795
796
797
798

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
799
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
800
801
802
803
804
805
806
807
808
809
810
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

811
812
813
814
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
815
 * @param pcells (output) The end-of-timestep information we pack into
816
817
818
 *
 * @return The number of packed cells.
 */
819
820
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
821
822
#ifdef WITH_MPI

823
  /* Pack this cell's data. */
824
825
826
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
827

828
829
830
831
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
832
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
833
834
835
836
    }

  /* Return the number of packed values. */
  return count;
837
838
839
840
841

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
842
843
}

844
845
846
847
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
848
 * @param pcells The end-of-timestep information to unpack
849
850
851
 *
 * @return The number of cells created.
 */
852
853
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
854
855
#ifdef WITH_MPI

856
  /* Unpack this cell's data. */
857
858
859
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
860

861
862
863
864
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
996
997
998
    }

  /* Return the number of packed values. */
999
  return count;
1000
1001
1002
1003
1004

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
1005
}
1006

1007
1008
1009
1010
1011
1012
1013
1014
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
1015
1016
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
1049
1050
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1075
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
1076
1077
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
1078
1079
1080
1081
1082
1083
1084
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1085
                         struct gravity_tensors *restrict pcells) {
1086
1087
1088
#ifdef WITH_MPI

  /* Pack this cell's data. */
1089
  pcells[0] = *c->grav.multipole;
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1116
                           struct gravity_tensors *restrict pcells) {
1117
1118
1119
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1120
  *c->grav.multipole = pcells[0];
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/**
 * @brief Pack the counts for star formation of the given cell and all it's
 * sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_sf_counts(struct cell *restrict c,
                        struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].stars.delta_from_rebuild = c->stars.parts - c->stars.parts_rebuild;
  pcells[0].stars.count = c->stars.count;
1155
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL! c->depth=%d", c->depth);

  if (pcells[0].stars.delta_from_rebuild < 0)
    error("Stars part pointer moved in the wrong direction!");

  if (pcells[0].stars.delta_from_rebuild > 0 && c->depth == 0)
    error("Shifting the top-level pointer is not allowed!");
#endif

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the counts for star formation of a given cell and its
 * sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_sf_counts(struct cell *restrict c,
                          struct pcell_sf *restrict pcells) {

#ifdef WITH_MPI

#ifdef SWIFT_DEBUG_CHECKS
  if (c->stars.parts_rebuild == NULL)
    error("Star particles array at rebuild is NULL!");
#endif

  /* Unpack this cell's data. */
  c->stars.count = pcells[0].stars.count;
  c->stars.parts = c->stars.parts_rebuild + pcells[0].stars.delta_from_rebuild;
1206
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_sf_counts(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1224
/**
1225
 * @brief Lock a cell for access to its array of #part and hold its parents.
1226
1227
 *
 * @param c The #cell.
1228
 * @return 0 on success, 1 on failure
1229
 */
1230
int cell_locktree(struct cell *c) {
1231
  TIMER_TIC;
1232
1233

  /* First of all, try to lock this cell. */
1234
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1235
1236
1237
1238
1239
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1240
  if (c->hydro.hold) {
1241
    /* Unlock this cell. */
1242
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1243
1244
1245
1246
1247
1248
1249

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1250
  struct cell *finger;
1251
1252
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1253
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1254
1255

    /* Increment the hold. */
1256
    atomic_inc(&finger->hydro.hold);
1257
1258

    /* Unlock the cell. */
1259
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1271
1272
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1273
      atomic_dec(&finger2->hydro.hold);
1274
1275

    /* Unlock this cell. */
1276
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1277
1278
1279
1280
1281
1282
1283

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1284
1285
1286
1287
1288
1289
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1290
int cell_glocktree(struct cell *c) {
1291
  TIMER_TIC;
1292
1293

  /* First of all, try to lock this cell. */
1294
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1295
1296
1297
1298
1299
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1300
  if (c->grav.phold) {
1301
    /* Unlock this cell. */
1302
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1303
1304
1305
1306
1307
1308
1309

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1310
  struct cell *finger;
1311
1312
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1313
    if (lock_trylock(&finger->grav.plock) != 0) break;
1314
1315

    /* Increment the hold. */
1316
    atomic_inc(&finger->grav.phold);
1317
1318

    /* Unlock the cell. */
1319
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1331
1332
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1333
      atomic_dec(&finger2->grav.phold);
1334
1335

    /* Unlock this cell. */
1336
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1337
1338
1339
1340
1341
1342

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1343

1344
1345
1346
1347
1348
1349
1350
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
1351
1352
  TIMER_TIC;

1353
  /* First of all, try to lock this cell. */
1354
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1355
1356
1357
1358
1359
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1360
  if (c->grav.mhold) {
1361
    /* Unlock this cell. */
1362
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1373
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1374
1375

    /* Increment the hold. */
1376
    atomic_inc(&finger->grav.mhold);
1377
1378

    /* Unlock the cell. */
1379
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1380
1381
1382
1383
1384
1385