testPeriodicBC.c 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2015 Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/* Local headers. */
#include "swift.h"

#define ACC_THRESHOLD 1e-5

#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_density_vec
#define DOPAIR1 runner_dopair1_density_vec
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif

#ifndef DOSELF1
#define DOSELF1 runner_doself1_density
#define DOSELF1_NAME "runner_doself1_density"
#endif

#ifndef DOPAIR1
#define DOPAIR1 runner_dopair1_density
#define DOPAIR1_NAME "runner_dopair1_density"
#endif

enum velocity_types {
  velocity_zero,
  velocity_random,
  velocity_divergent,
  velocity_rotating
};

/**
 * @brief Constructs a cell and all of its particle in a valid state prior to
 * a DOPAIR or DOSELF calcuation.
 *
 * @param n The cube root of the number of particles.
 * @param offset The position of the cell offset from (0,0,0).
 * @param size The cell size.
 * @param h The smoothing length of the particles in units of the inter-particle
 *separation.
 * @param density The density of the fluid.
 * @param partId The running counter of IDs.
 * @param pert The perturbation to apply to the particles in the cell in units
 *of the inter-particle separation.
 * @param vel The type of velocity field (0, random, divergent, rotating)
 */
struct cell *make_cell(size_t n, double *offset, double size, double h,
    double density, long long *partId, double pert,
    enum velocity_types vel) {
  const size_t count = n * n * n;
  const double volume = size * size * size;
  struct cell *cell = malloc(sizeof(struct cell));
  bzero(cell, sizeof(struct cell));

  if (posix_memalign((void **)&cell->parts, part_align,
        count * sizeof(struct part)) != 0) {
    error("couldn't allocate particles, no. of particles: %d", (int)count);
  }
  bzero(cell->parts, count * sizeof(struct part));

  float h_max = 0.f;

  /* Construct the parts */
  struct part *part = cell->parts;
  for (size_t x = 0; x < n; ++x) {
    for (size_t y = 0; y < n; ++y) {
      for (size_t z = 0; z < n; ++z) {
        part->x[0] =
          offset[0] +
          size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
        part->x[1] =
          offset[1] +
          size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
        part->x[2] =
          offset[2] +
          size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
        switch (vel) {
          case velocity_zero:
            part->v[0] = 0.f;
            part->v[1] = 0.f;
            part->v[2] = 0.f;
            break;
          case velocity_random:
            part->v[0] = random_uniform(-0.05, 0.05);
            part->v[1] = random_uniform(-0.05, 0.05);
            part->v[2] = random_uniform(-0.05, 0.05);
            break;
          case velocity_divergent:
            part->v[0] = part->x[0] - 1.5 * size;
            part->v[1] = part->x[1] - 1.5 * size;
            part->v[2] = part->x[2] - 1.5 * size;
            break;
          case velocity_rotating:
            part->v[0] = part->x[1];
            part->v[1] = -part->x[0];
            part->v[2] = 0.f;
            break;
        }
        part->h = size * h / (float)n;
        h_max = fmax(h_max, part->h);
        part->id = ++(*partId);

#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
        part->conserved.mass = density * volume / count;

#ifdef SHADOWFAX_SPH
        double anchor[3] = {0., 0., 0.};
        double side[3] = {1., 1., 1.};
        voronoi_cell_init(&part->cell, part->x, anchor, side);
#endif

#else
        part->mass = density * volume / count;
#endif

#if defined(HOPKINS_PE_SPH)
        part->entropy = 1.f;
        part->entropy_one_over_gamma = 1.f;
#endif

        part->time_bin = 1;

#ifdef SWIFT_DEBUG_CHECKS
        part->ti_drift = 8;
        part->ti_kick = 8;
#endif

        ++part;
      }
    }
  }

  /* Cell properties */
  cell->split = 0;
  cell->h_max = h_max;
  cell->count = count;
  cell->dx_max_part = 0.;
  cell->dx_max_sort = 0.;
  cell->width[0] = size;
  cell->width[1] = size;
  cell->width[2] = size;
  cell->loc[0] = offset[0];
  cell->loc[1] = offset[1];
  cell->loc[2] = offset[2];

  cell->ti_old_part = 8;
  cell->ti_end_min = 8;
  cell->ti_end_max = 8;
  cell->ti_sort = 8;

  shuffle_particles(cell->parts, cell->count);

  cell->sorted = 0;
  cell->sort = NULL;
  cell->sortsize = 0;

  return cell;
}

void clean_up(struct cell *ci) {
  free(ci->parts);
  free(ci->sort);
  free(ci);
}

/**
 * @brief Initializes all particles field to be ready for a density calculation
 */
void zero_particle_fields(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_init_part(&c->parts[pid], NULL);
  }
}

/**
 * @brief Ends the loop by adding the appropriate coefficients
 */
void end_calculation(struct cell *c) {
  for (int pid = 0; pid < c->count; pid++) {
    hydro_end_density(&c->parts[pid]);
  }
}

/**
 * @brief Dump all the particles to a file
 */
214
215
void dump_particle_fields(char *fileName, struct cell *main_cell) {
  FILE *file = fopen(fileName, "a");
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

  /* Write header */
  fprintf(file,
      "# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
      "%13s %13s %13s\n",
      "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
      "wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");

  fprintf(file, "# Main cell --------------------------------------------\n");

  /* Write main cell */
  for (int pid = 0; pid < main_cell->count; pid++) {
    fprintf(file,
        "%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
        "%13e %13e %13e\n",
        main_cell->parts[pid].id, main_cell->parts[pid].x[0],
        main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
        main_cell->parts[pid].v[0], main_cell->parts[pid].v[1],
        main_cell->parts[pid].v[2],
        hydro_get_density(&main_cell->parts[pid]),
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
        0.f,
#else
        main_cell->parts[pid].density.rho_dh,
#endif
        main_cell->parts[pid].density.wcount,
        main_cell->parts[pid].density.wcount_dh,
#if defined(GADGET2_SPH) || defined(DEFAULT_SPH) || defined(HOPKINS_PE_SPH)
        main_cell->parts[pid].density.div_v,
        main_cell->parts[pid].density.rot_v[0],
        main_cell->parts[pid].density.rot_v[1],
        main_cell->parts[pid].density.rot_v[2]
#else
          0., 0., 0., 0.
#endif
          );
  }
  fclose(file);
}

/**
 * @brief Compares the vectorised result against
 * the serial result of the interaction.
 *
 * @param serial_parts Particle array that has been interacted serially
 * @param vec_parts Particle array to be interacted using vectors
 * @param count No. of particles that have been interacted
 * @param threshold Level of accuracy needed
 *
 * @return Non-zero value if difference found, 0 otherwise
 */
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
    double threshold) {
  int result = 0;

  for (int i = 0; i < count; i++)
    result += compare_particles(serial_parts[i], vec_parts[i], threshold);

  return result;
}

/* Just a forward declaration... */
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
void runner_dopair1_density(struct runner *r, struct cell *ci, struct cell *cj);
void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
    struct cell *cj);

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
void test_boundary_conditions(struct cell **cells, struct runner runner, const int loc_i, const int loc_j, const int loc_k, const int dim, char *swiftOutputFileName, char *bruteForceOutputFileName) {

  /* Store the main cell for future use */
  struct cell *main_cell = cells[loc_i * (dim*dim) + loc_j * dim + loc_k];

  /* Zero the fields */
  for (int j = 0; j < 512; ++j) zero_particle_fields(cells[j]);

  /* Run all the pairs */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

#ifdef WITH_VECTORIZATION
  runner.ci_cache.count = 0;
  cache_init(&runner.ci_cache, 512);
  runner.cj_cache.count = 0;
  cache_init(&runner.cj_cache, 512);
#endif

  /* Now loop over all the neighbours of this cell 
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
        struct cell *cj = cells[iii * (dim*dim) + jjj * dim + kkk];

        if (cj != main_cell) DOPAIR1(&runner, main_cell, cj);
        
      }
    }
  }

  /* And now the self-interaction */

  DOSELF1(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump particles from the main cell. */
  dump_particle_fields(swiftOutputFileName, main_cell);

  /* Now perform a brute-force version for accuracy tests */

  /* Zero the fields */
  for (int i = 0; i < 512; ++i) zero_particle_fields(cells[i]);

#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))

  /* Now loop over all the neighbours of this cell 
   * and perform the pair interactions. */
  for (int ii = -1; ii < 2; ii++) {
    int iii = loc_i + ii;
    iii = (iii + dim) % dim;
    for (int jj = -1; jj < 2; jj++) {
      int jjj = loc_j + jj;
      jjj = (jjj + dim) % dim;
      for (int kk = -1; kk < 2; kk++) {
        int kkk = loc_k + kk;
        kkk = (kkk + dim) % dim;

        /* Get the neighbouring cell */
        struct cell *cj = cells[iii * (dim*dim) + jjj * dim + kkk];

        if (cj != main_cell) pairs_all_density(&runner, main_cell, cj);
        
      }
    }
  }

  /* And now the self-interaction */
  self_all_density(&runner, main_cell);

#endif

  /* Let's get physical ! */
  end_calculation(main_cell);

  /* Dump */
  dump_particle_fields(bruteForceOutputFileName, main_cell);
}

375
376
377
378
379
380
381
382
383
/* And go... */
int main(int argc, char *argv[]) {

  engine_pin();
  size_t runs = 0, particles = 0;
  double h = 1.23485, size = 1., rho = 1.;
  double perturbation = 0.;
  double threshold = ACC_THRESHOLD;
  char outputFileNameExtension[200] = "";
384
385
  char swiftOutputFileName[200] = "";
  char bruteForceOutputFileName[200] = "";
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
  enum velocity_types vel = velocity_zero;

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

  /* Choke on FP-exceptions */
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);

  /* Get some randomness going */
  srand(0);

  char c;
  while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:a:")) != -1) {
    switch (c) {
      case 'h':
        sscanf(optarg, "%lf", &h);
        break;
      case 's':
        sscanf(optarg, "%lf", &size);
        break;
      case 'n':
        sscanf(optarg, "%zu", &particles);
        break;
      case 'r':
        sscanf(optarg, "%zu", &runs);
        break;
      case 'd':
        sscanf(optarg, "%lf", &perturbation);
        break;
      case 'm':
        sscanf(optarg, "%lf", &rho);
        break;
      case 'f':
        strcpy(outputFileNameExtension, optarg);
        break;
      case 'v':
        sscanf(optarg, "%d", (int *)&vel);
        break;
      case 'a':
        sscanf(optarg, "%lf", &threshold);
        break;
      case '?':
        error("Unknown option.");
        break;
    }
  }

  if (h < 0 || particles == 0 || runs == 0) {
    printf(
        "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
        "\nGenerates 27 cells, filled with particles on a Cartesian grid."
        "\nThese are then interacted using runner_dopair1_density() and "
        "runner_doself1_density()."
        "\n\nOptions:"
        "\n-h DISTANCE=1.2348 - Smoothing length in units of <x>"
        "\n-m rho             - Physical density in the cell"
        "\n-s size            - Physical size of the cell"
        "\n-d pert            - Perturbation to apply to the particles [0,1["
        "\n-v type (0,1,2,3)  - Velocity field: (zero, random, divergent, "
        "rotating)"
        "\n-f fileName        - Part of the file name used to save the dumps\n",
        argv[0]);
    exit(1);
  }

  /* Help users... */
  message("DOSELF1 function called: %s", DOSELF1_NAME);
  message("DOPAIR1 function called: %s", DOPAIR1_NAME);
  message("Vector size: %d", VEC_SIZE);
  message("Adiabatic index: ga = %f", hydro_gamma);
  message("Hydro implementation: %s", SPH_IMPLEMENTATION);
  message("Smoothing length: h = %f", h * size);
  message("Kernel:               %s", kernel_name);
  message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
  message("Density target: rho = %f", rho);
  message("div_v target:   div = %f", vel == 2 ? 3.f : 0.f);
  message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);

  printf("\n");

  /* Build the infrastructure */
  struct space space;
  space.periodic = 1;
  space.dim[0] = 8.;
  space.dim[1] = 8.;
  space.dim[2] = 8.;

  struct hydro_props hp;
  hp.h_max = FLT_MAX;

  struct engine engine;
  engine.s = &space;
  engine.time = 0.1f;
  engine.ti_current = 8;
  engine.max_active_bin = num_time_bins;
  engine.hydro_properties = &hp;

  struct runner runner;
  runner.e = &engine;

  /* Construct some cells */
  struct cell *cells[512];
  const int dim = 8;
  static long long partId = 0;
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      for (int k = 0; k < dim; ++k) {
        double offset[3] = {i * size, j * size, k * size};
        cells[i * (dim*dim) + j * dim + k] = make_cell(particles, offset, size, h, rho,
            &partId, perturbation, vel);

        runner_do_drift_part(&runner, cells[i * (dim*dim) + j * dim + k], 0);

        runner_do_sort(&runner, cells[i * (dim*dim) + j * dim + k], 0x1FFF, 0);
      }
    }
  }

505
506
507
508
  /* Create output file names. */
  sprintf(swiftOutputFileName, "swift_periodic_BC_%s.dat",
      outputFileNameExtension);
  sprintf(bruteForceOutputFileName, "brute_force_periodic_BC_%s.dat",
509
510
      outputFileNameExtension);

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
  /* Delete files if they already exist. */
  remove(swiftOutputFileName);
  remove(bruteForceOutputFileName);
  
  /* Test the periodic boundary conditions for each of the 8 corners. */
  test_boundary_conditions(cells, runner, 0, 0, 0, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, 0, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, 0, dim - 1, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, 0, dim - 1, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, 0, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, 0, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, dim - 1, dim - 1, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, dim - 1, dim - 1, dim, swiftOutputFileName, bruteForceOutputFileName);

  /* Test the boundary conditions for cells at the centre of each face of the box. */
  test_boundary_conditions(cells, runner, (dim - 1) / 2, (dim - 1) / 2, 0, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, dim - 1, (dim - 1) / 2, (dim - 1) / 2, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, (dim - 1) / 2, (dim - 1) / 2, dim - 1, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, 0, (dim - 1) / 2, (dim - 1) / 2, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, (dim - 1) / 2, 0, (dim - 1) / 2, dim, swiftOutputFileName, bruteForceOutputFileName);
  test_boundary_conditions(cells, runner, (dim - 1) / 2, dim - 1, (dim - 1) / 2, dim, swiftOutputFileName, bruteForceOutputFileName);
532
533
534
535
536
537

  /* Clean things to make the sanitizer happy ... */
  for (int i = 0; i < 512; ++i) clean_up(cells[i]);

  return 0;
}