scheduler.c 48.6 KB
Newer Older
1
2
/*******************************************************************************
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *               2016 Peter W. Draper (p.w.draper@durham.ac.uk)
6
 *
7
8
9
10
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
11
 *
12
13
14
15
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
16
 *
17
18
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
 *
20
21
22
23
24
25
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
26
27
28
#include <limits.h>
#include <math.h>
#include <pthread.h>
29
30
31
32
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

33
34
/* MPI headers. */
#ifdef WITH_MPI
35
#include <mpi.h>
36
37
#endif

38
39
40
/* This object's header. */
#include "scheduler.h"

41
42
43
/* Local headers. */
#include "atomic.h"
#include "const.h"
44
45
#include "cycle.h"
#include "error.h"
46
#include "intrinsics.h"
47
#include "kernel_hydro.h"
48
49
50
#include "queue.h"
#include "space.h"
#include "task.h"
51
#include "timers.h"
52

53
54
55
56
57
/**
 * @brief Re-set the list of active tasks.
 */
void scheduler_clear_active(struct scheduler *s) { s->active_count = 0; }

58
59
60
61
62
63
64
/**
 * @brief Add an unlock_task to the given task.
 *
 * @param s The #scheduler.
 * @param ta The unlocking #task.
 * @param tb The #task that will be unlocked.
 */
65
66
67
68
69
70
71
void scheduler_addunlock(struct scheduler *s, struct task *ta,
                         struct task *tb) {
  /* Get an index at which to store this unlock. */
  const int ind = atomic_inc(&s->nr_unlocks);

  /* Does the buffer need to be grown? */
  if (ind == s->size_unlocks) {
72
    /* Allocate the new buffer. */
73
74
75
    struct task **unlocks_new;
    int *unlock_ind_new;
    const int size_unlocks_new = s->size_unlocks * 2;
76
    if ((unlocks_new = (struct task **)malloc(sizeof(struct task *) *
77
                                              size_unlocks_new)) == NULL ||
78
79
        (unlock_ind_new = (int *)malloc(sizeof(int) * size_unlocks_new)) ==
            NULL)
80
      error("Failed to re-allocate unlocks.");
81

82
    /* Wait for all writes to the old buffer to complete. */
83
84
85
    while (s->completed_unlock_writes < ind)
      ;

86
    /* Copy the buffers. */
87
88
89
90
91
92
    memcpy(unlocks_new, s->unlocks, sizeof(struct task *) * ind);
    memcpy(unlock_ind_new, s->unlock_ind, sizeof(int) * ind);
    free(s->unlocks);
    free(s->unlock_ind);
    s->unlocks = unlocks_new;
    s->unlock_ind = unlock_ind_new;
93

94
    /* Publish the new buffer size. */
95
96
    s->size_unlocks = size_unlocks_new;
  }
97

98
  /* Wait for there to actually be space at my index. */
99
100
  while (ind > s->size_unlocks)
    ;
101
102
103
104

  /* Write the unlock to the scheduler. */
  s->unlocks[ind] = tb;
  s->unlock_ind[ind] = ta - s->tasks;
105
  atomic_inc(&s->completed_unlock_writes);
106
107
}

108
/**
109
 * @brief Split a task if too large.
110
 *
111
112
 * @param t The #task
 * @param s The #scheduler we are working in.
113
 */
114
static void scheduler_splittask(struct task *t, struct scheduler *s) {
115
116

  /* Static constants. */
117
  static const int pts[7][8] = {
Peter W. Draper's avatar
Peter W. Draper committed
118
119
120
121
      {-1, 12, 10, 9, 4, 3, 1, 0},     {-1, -1, 11, 10, 5, 4, 2, 1},
      {-1, -1, -1, 12, 7, 6, 4, 3},    {-1, -1, -1, -1, 8, 7, 5, 4},
      {-1, -1, -1, -1, -1, 12, 10, 9}, {-1, -1, -1, -1, -1, -1, 11, 10},
      {-1, -1, -1, -1, -1, -1, -1, 12}};
Matthieu Schaller's avatar
Matthieu Schaller committed
122
123
124
  static const float sid_scale[13] = {
      0.1897f, 0.4025f, 0.1897f, 0.4025f, 0.5788f, 0.4025f, 0.1897f,
      0.4025f, 0.1897f, 0.4025f, 0.5788f, 0.4025f, 0.5788f};
125

126
127
128
  /* Iterate on this task until we're done with it. */
  int redo = 1;
  while (redo) {
129

130
131
    /* Reset the redo flag. */
    redo = 0;
132

133
134
135
136
137
138
139
140
    /* Non-splittable task? */
    if ((t->ci == NULL || (t->type == task_type_pair && t->cj == NULL)) ||
        ((t->type == task_type_kick) && t->ci->nodeID != s->nodeID) ||
        ((t->type == task_type_init) && t->ci->nodeID != s->nodeID)) {
      t->type = task_type_none;
      t->skip = 1;
      break;
    }
141

142
143
    /* Self-interaction? */
    if (t->type == task_type_self) {
144

145
146
      /* Get a handle on the cell involved. */
      struct cell *ci = t->ci;
147
      const double hi = ci->dmin;
148
149
150

      /* Foreign task? */
      if (ci->nodeID != s->nodeID) {
151
        t->skip = 1;
152
        break;
153
154
      }

155
      /* Is this cell even split? */
156
      if (ci->split && ci->h_max * kernel_gamma * space_stretch < hi / 2) {
157

158
        /* Make a sub? */
159
        if (scheduler_dosub &&
160
161
            ((ci->count > 0 && ci->count < space_subsize / ci->count) ||
             (ci->gcount > 0 && ci->gcount < space_subsize / ci->gcount))) {
162

163
164
165
166
167
          /* convert to a self-subtask. */
          t->type = task_type_sub_self;

          /* Otherwise, make tasks explicitly. */
        } else {
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
          /* Take a step back (we're going to recycle the current task)... */
          redo = 1;

          /* Add the self tasks. */
          int first_child = 0;
          while (ci->progeny[first_child] == NULL) first_child++;
          t->ci = ci->progeny[first_child];
          for (int k = first_child + 1; k < 8; k++)
            if (ci->progeny[k] != NULL)
              scheduler_splittask(
                  scheduler_addtask(s, task_type_self, t->subtype, 0, 0,
                                    ci->progeny[k], NULL, 0),
                  s);

          /* Make a task for each pair of progeny. */
          for (int j = 0; j < 8; j++)
            if (ci->progeny[j] != NULL)
              for (int k = j + 1; k < 8; k++)
                if (ci->progeny[k] != NULL)
                  scheduler_splittask(
                      scheduler_addtask(s, task_type_pair, t->subtype,
                                        pts[j][k], 0, ci->progeny[j],
                                        ci->progeny[k], 0),
                      s);
193
        }
194
      }
195

196
197
      /* Pair interaction? */
    } else if (t->type == task_type_pair && t->subtype != task_subtype_grav) {
198

199
200
201
202
203
      /* Get a handle on the cells involved. */
      struct cell *ci = t->ci;
      struct cell *cj = t->cj;
      const double hi = ci->dmin;
      const double hj = cj->dmin;
204

205
206
207
208
209
      /* Foreign task? */
      if (ci->nodeID != s->nodeID && cj->nodeID != s->nodeID) {
        t->skip = 1;
        break;
      }
210

211
212
213
214
      /* Get the sort ID, use space_getsid and not t->flags
         to make sure we get ci and cj swapped if needed. */
      double shift[3];
      int sid = space_getsid(s->space, &ci, &cj, shift);
215

216
217
218
219
220
221
222
      /* Should this task be split-up? */
      if (ci->split && cj->split &&
          ci->h_max * kernel_gamma * space_stretch < hi / 2 &&
          cj->h_max * kernel_gamma * space_stretch < hj / 2) {

        /* Replace by a single sub-task? */
        if (scheduler_dosub &&
223
            ci->count * sid_scale[sid] < space_subsize / cj->count &&
224
225
226
227
228
229
            sid != 0 && sid != 2 && sid != 6 && sid != 8) {

          /* Make this task a sub task. */
          t->type = task_type_sub_pair;

          /* Otherwise, split it. */
230
231
        } else {

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
          /* Take a step back (we're going to recycle the current task)... */
          redo = 1;

          /* For each different sorting type... */
          switch (sid) {

            case 0: /* (  1 ,  1 ,  1 ) */
              t->ci = ci->progeny[7];
              t->cj = cj->progeny[0];
              t->flags = 0;
              break;

            case 1: /* (  1 ,  1 ,  0 ) */
              t->ci = ci->progeny[6];
              t->cj = cj->progeny[0];
              t->flags = 1;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 1, 0,
                                    ci->progeny[7], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[6], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              break;

            case 2: /* (  1 ,  1 , -1 ) */
              t->ci = ci->progeny[6];
              t->cj = cj->progeny[1];
              t->flags = 2;
              t->tight = 1;
              break;

            case 3: /* (  1 ,  0 ,  1 ) */
              t->ci = ci->progeny[5];
              t->cj = cj->progeny[0];
              t->flags = 3;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 3, 0,
                                    ci->progeny[7], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[5], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 6, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              break;

            case 4: /* (  1 ,  0 ,  0 ) */
              t->ci = ci->progeny[4];
              t->cj = cj->progeny[0];
              t->flags = 4;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 5, 0,
                                    ci->progeny[5], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[6], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 3, 0,
                                    ci->progeny[4], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 4, 0,
                                    ci->progeny[5], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 6, 0,
                                    ci->progeny[6], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[7], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 1, 0,
                                    ci->progeny[4], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[5], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 4, 0,
                                    ci->progeny[6], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 5, 0,
                                    ci->progeny[7], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[4], cj->progeny[3], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 1, 0,
                                    ci->progeny[5], cj->progeny[3], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 3, 0,
                                    ci->progeny[6], cj->progeny[3], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 4, 0,
                                    ci->progeny[7], cj->progeny[3], 1),
                  s);
              break;

            case 5: /* (  1 ,  0 , -1 ) */
              t->ci = ci->progeny[4];
              t->cj = cj->progeny[1];
              t->flags = 5;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 5, 0,
                                    ci->progeny[6], cj->progeny[3], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[4], cj->progeny[3], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[6], cj->progeny[1], 1),
                  s);
              break;

            case 6: /* (  1 , -1 ,  1 ) */
              t->ci = ci->progeny[5];
              t->cj = cj->progeny[2];
              t->flags = 6;
              t->tight = 1;
              break;

            case 7: /* (  1 , -1 ,  0 ) */
              t->ci = ci->progeny[4];
              t->cj = cj->progeny[3];
              t->flags = 6;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[5], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[4], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[5], cj->progeny[3], 1),
                  s);
              break;

            case 8: /* (  1 , -1 , -1 ) */
              t->ci = ci->progeny[4];
              t->cj = cj->progeny[3];
              t->flags = 8;
              t->tight = 1;
              break;

            case 9: /* (  0 ,  1 ,  1 ) */
              t->ci = ci->progeny[3];
              t->cj = cj->progeny[0];
              t->flags = 9;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 9, 0,
                                    ci->progeny[7], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[3], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              break;

            case 10: /* (  0 ,  1 ,  0 ) */
              t->ci = ci->progeny[2];
              t->cj = cj->progeny[0];
              t->flags = 10;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 11, 0,
                                    ci->progeny[3], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[6], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 6, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 9, 0,
                                    ci->progeny[2], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 10, 0,
                                    ci->progeny[3], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[6], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 7, 0,
                                    ci->progeny[7], cj->progeny[1], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 1, 0,
                                    ci->progeny[2], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[3], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 10, 0,
                                    ci->progeny[6], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 11, 0,
                                    ci->progeny[7], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[2], cj->progeny[5], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 1, 0,
                                    ci->progeny[3], cj->progeny[5], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 9, 0,
                                    ci->progeny[6], cj->progeny[5], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 10, 0,
                                    ci->progeny[7], cj->progeny[5], 1),
                  s);
              break;

            case 11: /* (  0 ,  1 , -1 ) */
              t->ci = ci->progeny[2];
              t->cj = cj->progeny[1];
              t->flags = 11;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 11, 0,
                                    ci->progeny[6], cj->progeny[5], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[2], cj->progeny[5], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 6, 0,
                                    ci->progeny[6], cj->progeny[1], 1),
                  s);
              break;

            case 12: /* (  0 ,  0 ,  1 ) */
              t->ci = ci->progeny[1];
              t->cj = cj->progeny[0];
              t->flags = 12;
              t->tight = 1;
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 11, 0,
                                    ci->progeny[3], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 5, 0,
                                    ci->progeny[5], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 2, 0,
                                    ci->progeny[7], cj->progeny[0], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 9, 0,
                                    ci->progeny[1], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 12, 0,
                                    ci->progeny[3], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 8, 0,
                                    ci->progeny[5], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 5, 0,
                                    ci->progeny[7], cj->progeny[2], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 3, 0,
                                    ci->progeny[1], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 6, 0,
                                    ci->progeny[3], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 12, 0,
                                    ci->progeny[5], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 11, 0,
                                    ci->progeny[7], cj->progeny[4], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                    ci->progeny[1], cj->progeny[6], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 3, 0,
                                    ci->progeny[3], cj->progeny[6], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 9, 0,
                                    ci->progeny[5], cj->progeny[6], 1),
                  s);
              scheduler_splittask(
                  scheduler_addtask(s, task_type_pair, t->subtype, 12, 0,
                                    ci->progeny[7], cj->progeny[6], 1),
                  s);
              break;
          } /* switch(sid) */
580
581
        }

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        /* Otherwise, break it up if it is too large? */
      } else if (scheduler_doforcesplit && ci->split && cj->split &&
                 (ci->count > space_maxsize / cj->count)) {

        // message( "force splitting pair with %i and %i parts." , ci->count ,
        // cj->count );

        /* Replace the current task. */
        t->type = task_type_none;

        for (int j = 0; j < 8; j++)
          if (ci->progeny[j] != NULL)
            for (int k = 0; k < 8; k++)
              if (cj->progeny[k] != NULL) {
                struct task *tl =
                    scheduler_addtask(s, task_type_pair, t->subtype, 0, 0,
                                      ci->progeny[j], cj->progeny[k], 0);
                scheduler_splittask(tl, s);
                tl->flags = space_getsid(s->space, &t->ci, &t->cj, shift);
              }

        /* Otherwise, if not spilt, stitch-up the sorting. */
      } else {

        /* Create the sort for ci. */
        lock_lock(&ci->lock);
        if (ci->sorts == NULL)
          ci->sorts = scheduler_addtask(s, task_type_sort, task_subtype_none,
                                        1 << sid, 0, ci, NULL, 0);
        else
          ci->sorts->flags |= (1 << sid);
        lock_unlock_blind(&ci->lock);
        scheduler_addunlock(s, ci->sorts, t);

        /* Create the sort for cj. */
        lock_lock(&cj->lock);
        if (cj->sorts == NULL)
          cj->sorts = scheduler_addtask(s, task_type_sort, task_subtype_none,
                                        1 << sid, 0, cj, NULL, 0);
        else
          cj->sorts->flags |= (1 << sid);
        lock_unlock_blind(&cj->lock);
        scheduler_addunlock(s, cj->sorts, t);
      }

    } /* pair interaction? */

    /* Long-range gravity interaction ? */
    else if (t->type == task_type_grav_mm) {

      /* Get a handle on the cells involved. */
      struct cell *ci = t->ci;

      /* Safety thing */
      if (ci->gcount == 0) t->type = task_type_none;

    } /* gravity interaction? */
  }   /* iterate over the current task. */
}

/**
 * @brief Mapper function to split tasks that may be too large.
 *
 * @param map_data the tasks to process
 * @param num_elements the number of tasks.
 * @param extra_data The #scheduler we are working in.
 */
void scheduler_splittasks_mapper(void *map_data, int num_elements,
                                 void *extra_data) {

  /* Extract the parameters. */
  struct scheduler *s = (struct scheduler *)extra_data;
  struct task *tasks = (struct task *)map_data;
655

656
657
658
  for (int ind = 0; ind < num_elements; ind++) {
    struct task *t = &tasks[ind];
    scheduler_splittask(t, s);
659
  }
660
}
661

Matthieu Schaller's avatar
Matthieu Schaller committed
662
663
664
665
666
/**
 * @brief Splits all the tasks in the scheduler that are too large.
 *
 * @param s The #scheduler.
 */
667
void scheduler_splittasks(struct scheduler *s) {
668

669
670
  /* Call the mapper on each current task. */
  threadpool_map(s->threadpool, scheduler_splittasks_mapper, s->tasks,
671
                 s->nr_tasks, sizeof(struct task), 1000, s);
672
673
}

674
675
676
677
678
679
680
/**
 * @brief Add a #task to the #scheduler.
 *
 * @param s The #scheduler we are working in.
 * @param type The type of the task.
 * @param subtype The sub-type of the task.
 * @param flags The flags of the task.
Matthieu Schaller's avatar
Matthieu Schaller committed
681
 * @param wait The number of unsatisfied dependencies of this task.
682
683
 * @param ci The first cell to interact.
 * @param cj The second cell to interact.
Matthieu Schaller's avatar
Matthieu Schaller committed
684
 * @param tight 
685
 */
686
687
688
struct task *scheduler_addtask(struct scheduler *s, enum task_types type,
                               enum task_subtypes subtype, int flags, int wait,
                               struct cell *ci, struct cell *cj, int tight) {
689
690

  /* Get the next free task. */
Pedro Gonnet's avatar
Pedro Gonnet committed
691
  const int ind = atomic_inc(&s->tasks_next);
Matthieu Schaller's avatar
Matthieu Schaller committed
692

693
694
695
696
  /* Overflow? */
  if (ind >= s->size) error("Task list overflow.");

  /* Get a pointer to the new task. */
Pedro Gonnet's avatar
Pedro Gonnet committed
697
  struct task *t = &s->tasks[ind];
698
699
700
701
702
703
704
705

  /* Copy the data. */
  t->type = type;
  t->subtype = subtype;
  t->flags = flags;
  t->wait = wait;
  t->ci = ci;
  t->cj = cj;
706
  t->skip = 1; /* Mark tasks as skip by default. */
707
708
709
710
711
712
713
  t->tight = tight;
  t->implicit = 0;
  t->weight = 0;
  t->rank = 0;
  t->tic = 0;
  t->toc = 0;
  t->nr_unlock_tasks = 0;
714
  t->rid = -1;
715
716
717
718
719
720
721
722
723

  /* Add an index for it. */
  // lock_lock( &s->lock );
  s->tasks_ind[atomic_inc(&s->nr_tasks)] = ind;
  // lock_unlock_blind( &s->lock );

  /* Return a pointer to the new task. */
  return t;
}
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/**
 * @brief Set the unlock pointers in each task.
 *
 * @param s The #scheduler.
 */
void scheduler_set_unlocks(struct scheduler *s) {

  /* Store the counts for each task. */
  int *counts;
  if ((counts = (int *)malloc(sizeof(int) * s->nr_tasks)) == NULL)
    error("Failed to allocate temporary counts array.");
  bzero(counts, sizeof(int) * s->nr_tasks);
  for (int k = 0; k < s->nr_unlocks; k++) counts[s->unlock_ind[k]] += 1;

  /* Compute the offset for each unlock block. */
  int *offsets;
  if ((offsets = (int *)malloc(sizeof(int) * (s->nr_tasks + 1))) == NULL)
    error("Failed to allocate temporary offsets array.");
  offsets[0] = 0;
  for (int k = 0; k < s->nr_tasks; k++) offsets[k + 1] = offsets[k] + counts[k];

  /* Create and fill a temporary array with the sorted unlocks. */
  struct task **unlocks;
  if ((unlocks = (struct task **)malloc(sizeof(struct task *) *
                                        s->size_unlocks)) == NULL)
    error("Failed to allocate temporary unlocks array.");
  for (int k = 0; k < s->nr_unlocks; k++) {
    const int ind = s->unlock_ind[k];
    unlocks[offsets[ind]] = s->unlocks[k];
    offsets[ind] += 1;
  }

  /* Swap the unlocks. */
  free(s->unlocks);
  s->unlocks = unlocks;

  /* Re-set the offsets. */
  offsets[0] = 0;
  for (int k = 1; k < s->nr_tasks; k++)
    offsets[k] = offsets[k - 1] + counts[k - 1];

  /* Set the unlocks in the tasks. */
  for (int k = 0; k < s->nr_tasks; k++) {
    struct task *t = &s->tasks[k];
    t->nr_unlock_tasks = counts[k];
    t->unlock_tasks = &s->unlocks[offsets[k]];
  }
772

773
#ifdef SWIFT_DEBUG_CHECKS
774
  /* Verify that there are no duplicate unlocks. */
775
  for (int k = 0; k < s->nr_tasks; k++) {
776
777
778
779
780
781
782
    struct task *t = &s->tasks[k];
    for (int i = 0; i < t->nr_unlock_tasks; i++) {
      for (int j = i + 1; j < t->nr_unlock_tasks; j++) {
        if (t->unlock_tasks[i] == t->unlock_tasks[j])
          error("duplicate unlock!");
      }
    }
783
784
  }
#endif
785
786
787
788
789
790

  /* Clean up. */
  free(counts);
  free(offsets);
}

791
/**
792
793
794
795
 * @brief Sort the tasks in topological order over all queues.
 *
 * @param s The #scheduler.
 */
796
797
void scheduler_ranktasks(struct scheduler *s) {

Pedro Gonnet's avatar
Pedro Gonnet committed
798
799
800
  struct task *tasks = s->tasks;
  int *tid = s->tasks_ind;
  const int nr_tasks = s->nr_tasks;
801

802
  /* Run through the tasks and get all the waits right. */
803
804
805
806
807
808
809
810
  for (int i = 0; i < nr_tasks; i++) {
    struct task *t = &tasks[i];

    // Increment the waits of the dependances
    for (int k = 0; k < t->nr_unlock_tasks; k++) {
      t->unlock_tasks[k]->wait++;
    }
  }
811

812
813
814
815
816
817
818
819
  /* Load the tids of tasks with no waits. */
  int left = 0;
  for (int k = 0; k < nr_tasks; k++)
    if (tasks[k].wait == 0) {
      tid[left] = k;
      left += 1;
    }

820
  /* Main loop. */
821
  for (int j = 0, rank = 0; left < nr_tasks; rank++) {
822
823
824

    /* Did we get anything? */
    if (j == left) error("Unsatisfiable task dependencies detected.");
825
    const int left_old = left;
826
827

    /* Unlock the next layer of tasks. */
828
829
    for (; j < left_old; j++) {
      struct task *t = &tasks[tid[j]];
830
831
832
833
      t->rank = rank;
      /* message( "task %i of type %s has rank %i." , i ,
          (t->type == task_type_self) ? "self" : (t->type == task_type_pair) ?
         "pair" : "sort" , rank ); */
834
835
836
837
838
839
840
      for (int k = 0; k < t->nr_unlock_tasks; k++) {
        struct task *u = t->unlock_tasks[k];
        if (--u->wait == 0) {
          tid[left] = u - tasks;
          left += 1;
        }
      }
841
842
    }

843
844
    /* Move back to the old left (like Sanders). */
    j = left_old;
845
846
  }

847
#ifdef SWIFT_DEBUG_CHECKS
848
  /* Verify that the tasks were ranked correctly. */
849
  for (int k = 1; k < s->nr_tasks; k++)
850
    if (tasks[tid[k - 1]].rank > tasks[tid[k - 1]].rank)
851
852
      error("Task ranking failed.");
#endif
853
}
854
855
856
857
858
859
860

/**
 * @brief (Re)allocate the task arrays.
 *
 * @param s The #scheduler.
 * @param size The maximum number of tasks in the #scheduler.
 */
861
void scheduler_reset(struct scheduler *s, int size) {
862

863
864
  /* Do we need to re-allocate? */
  if (size > s->size) {
865

866
    /* Free existing task lists if necessary. */
867
868
    if (s->tasks != NULL) free(s->tasks);
    if (s->tasks_ind != NULL) free(s->tasks_ind);
869
    if (s->tid_active != NULL) free(s->tid_active);
870

871
    /* Allocate the new lists. */
872
873
874
875
876
    if (posix_memalign((void *)&s->tasks, task_align,
                       size * sizeof(struct task)) != 0)
      error("Failed to allocate task array.");

    if ((s->tasks_ind = (int *)malloc(sizeof(int) * size)) == NULL)
877
      error("Failed to allocate task lists.");
878
879
880

    if ((s->tid_active = (int *)malloc(sizeof(int) * size)) == NULL)
      error("Failed to allocate aactive task lists.");
881
  }
882

883
884
885
886
887
  /* Reset the counters. */
  s->size = size;
  s->nr_tasks = 0;
  s->tasks_next = 0;
  s->waiting = 0;
888
  s->nr_unlocks = 0;
889
  s->completed_unlock_writes = 0;
890
  s->active_count = 0;
891
892

  /* Set the task pointers in the queues. */
Pedro Gonnet's avatar
Pedro Gonnet committed
893
  for (int k = 0; k < s->nr_queues; k++) s->queues[k].tasks = s->tasks;
894
}
895
896

/**
897
 * @brief Compute the task weights
898
899
 *
 * @param s The #scheduler.
900
 * @param verbose Are we talkative?
901
 */
902
void scheduler_reweight(struct scheduler *s, int verbose) {
903

Pedro Gonnet's avatar
Pedro Gonnet committed
904
905
906
907
  const int nr_tasks = s->nr_tasks;
  int *tid = s->tasks_ind;
  struct task *tasks = s->tasks;
  const int nodeID = s->nodeID;
Pedro Gonnet's avatar
Pedro Gonnet committed
908
909
910
  const float sid_scale[13] = {0.1897, 0.4025, 0.1897, 0.4025, 0.5788,
                               0.4025, 0.1897, 0.4025, 0.1897, 0.4025,
                               0.5788, 0.4025, 0.5788};
Pedro Gonnet's avatar
Pedro Gonnet committed
911
  const float wscale = 0.001;
912
  const ticks tic = getticks();
913

914
  /* Run through the tasks backwards and set their weights. */
Pedro Gonnet's avatar
Pedro Gonnet committed
915
916
  for (int k = nr_tasks - 1; k >= 0; k--) {
    struct task *t = &tasks[tid[k]];
917
    t->weight = 0;
Pedro Gonnet's avatar
Pedro Gonnet committed
918
    for (int j = 0; j < t->nr_unlock_tasks; j++)
919
920
921
922
923
924
925
      if (t->unlock_tasks[j]->weight > t->weight)
        t->weight = t->unlock_tasks[j]->weight;
    if (!t->implicit && t->tic > 0)
      t->weight += wscale * (t->toc - t->tic);
    else
      switch (t->type) {
        case task_type_sort:
926
927
          t->weight += wscale * intrinsics_popcount(t->flags) * t->ci->count *
                       (sizeof(int) * 8 - intrinsics_clz(t->ci->count));
928
929
          break;
        case task_type_self:
930
          t->weight += 1 * wscale * t->ci->count * t->ci->count;
931
932
933
934
935
936
937
938
939
          break;
        case task_type_pair:
          if (t->ci->nodeID != nodeID || t->cj->nodeID != nodeID)
            t->weight +=
                3 * wscale * t->ci->count * t->cj->count * sid_scale[t->flags];
          else
            t->weight +=
                2 * wscale * t->ci->count * t->cj->count * sid_scale[t->flags];
          break;
940
        case task_type_sub_pair:
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
          if (t->ci->nodeID != nodeID || t->cj->nodeID != nodeID) {
            if (t->flags < 0)
              t->weight += 3 * wscale * t->ci->count * t->cj->count;
            else
              t->weight += 3 * wscale * t->ci->count * t->cj->count *
                           sid_scale[t->flags];
          } else {
            if (t->flags < 0)
              t->weight += 2 * wscale * t->ci->count * t->cj->count;
            else
              t->weight += 2 * wscale * t->ci->count * t->cj->count *
                           sid_scale[t->flags];
          }
          break;
        case task_type_sub_self:
          t->weight += 1 * wscale * t->ci->count * t->ci->count;
957
958
959
960
          break;
        case task_type_ghost:
          if (t->ci == t->ci->super) t->weight += wscale * t->ci->count;
          break;
Matthieu Schaller's avatar
Matthieu Schaller committed
961
962
963
964
        case task_type_kick:
          t->weight += wscale * t->ci->count;
          break;
        case task_type_init:
965
966
967
968
969
970
          t->weight += wscale * t->ci->count;
          break;
        default:
          break;
      }
  }
971
972
973
974

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
975
976

  /* int min = tasks[0].weight, max = tasks[0].weight;
977
  for ( int k = 1 ; k < nr_tasks ; k++ )
978
979
980
981
982
983
      if ( tasks[k].weight < min )
          min = tasks[k].weight;
      else if ( tasks[k].weight > max )
          max = tasks[k].weight;
  message( "task weights are in [ %i , %i ]." , min , max ); */
}
984

Pedro Gonnet's avatar
Pedro Gonnet committed
985
986
987
988
/**
 * @brief #threadpool_map function which runs through the task
 *        graph and re-computes the task wait counters.
 */
989
990
void scheduler_rewait_mapper(void *map_data, int num_elements,
                             void *extra_data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
991

992
  struct task *tasks = (struct task *)map_data;
Pedro Gonnet's avatar
Pedro Gonnet committed
993

994
995
  for (int ind = 0; ind < num_elements; ind++) {
    struct task *t = &tasks[ind];
Pedro Gonnet's avatar
Pedro Gonnet committed
996

997
    if (t->skip) continue;
Pedro Gonnet's avatar
Pedro Gonnet committed
998

999
1000
    /* Skip sort tasks that have already been performed */
    if (t->type == task_type_sort && t->flags == 0) {
For faster browsing, not all history is shown. View entire blame