runner.c 58.3 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
56
#include "runner_doiact_fft.h"
James Willis's avatar
James Willis committed
57
#include "runner_doiact_vec.h"
58
#include "scheduler.h"
59
#include "sort_part.h"
60
#include "sourceterms.h"
61
#include "space.h"
62
#include "stars.h"
63
64
#include "task.h"
#include "timers.h"
65
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
66

67
/* Import the density loop functions. */
68
69
70
#define FUNCTION density
#include "runner_doiact.h"

71
/* Import the gradient loop functions (if required). */
72
73
74
75
76
77
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

78
/* Import the force loop functions. */
79
80
81
82
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

83
/* Import the gravity loop functions. */
84
#include "runner_doiact_fft.h"
85
#include "runner_doiact_grav.h"
86

Tom Theuns's avatar
Tom Theuns committed
87
/**
Tom Theuns's avatar
Tom Theuns committed
88
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
89
90
91
92
93
94
95
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
96
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
98
  struct sourceterms *sourceterms = r->e->sourceterms;
99
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
100
101
102
103
104
105
106

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
107
  } else {
Tom Theuns's avatar
Tom Theuns committed
108

109
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
110

111
112
113
114
115
116
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
117
118
    }
  }
Tom Theuns's avatar
Tom Theuns committed
119
120
121
122

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
123
124
125
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
126
127
128
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
129
 */
130
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
131

Matthieu Schaller's avatar
Matthieu Schaller committed
132
133
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
134
135
136
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
137
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
138

139
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
140

141
  /* Anything to do here? */
142
  if (!cell_is_active(c, e)) return;
143

Tom Theuns's avatar
Tom Theuns committed
144
145
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
146
    for (int k = 0; k < 8; k++)
147
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
148
  } else {
149

150
151
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
152

153
154
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
155

156
      /* Is this part within the time step? */
157
      if (gpart_is_active(gp, e)) {
158
159
        external_gravity_acceleration(time, potential, constants, gp);
      }
160
    }
161
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
162

163
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
164
165
}

Stefan Arridge's avatar
Stefan Arridge committed
166
/**
167
168
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
169
170
171
172
173
174
175
176
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
177
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
178
  const int count = c->count;
179
180
181
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
182
  const struct unit_system *us = e->internal_units;
183
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
184
185
186

  TIMER_TIC;

187
188
189
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
190
191
192
193
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
194
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
195

196
197
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
198

199
200
201
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
202

203
      if (part_is_active(p, e)) {
204

205
206
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
207
208
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
209
210
211
212
213
214
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
221
void runner_do_sort_ascending(struct entry *sort, int N) {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
276
        }
277
278
279
280
281
282
283
284
285
286
287
288
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
289
    }
290
291
292
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
295
296
297
298
299
300
/**
 * @brief Recursively checks that the flags are consistent in a cell hierarchy.
 *
 * Debugging function.
 *
 * @param c The #cell to check.
 * @param flags The sorting flags to check.
 */
301
void runner_check_sorts(struct cell *c, int flags) {
Matthieu Schaller's avatar
Matthieu Schaller committed
302
303

#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
304
  if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
305
306
  if (c->split)
    for (int k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
307
      if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
Matthieu Schaller's avatar
Matthieu Schaller committed
308
309
310
#else
  error("Calling debugging code without debugging flag activated.");
#endif
311
312
}

Pedro Gonnet's avatar
Pedro Gonnet committed
313
314
315
316
317
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
318
 * @param flags Cell flag.
319
320
 * @param cleanup If true, re-build the sorts for the selected flags instead
 *        of just adding them.
321
322
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
323
 */
324
325
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
                    int clock) {
326
327

  struct entry *fingers[8];
328
  const int count = c->count;
329
330
  const struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
331
  float buff[8];
332

333
334
  TIMER_TIC;

335
336
  /* We need to do the local sorts plus whatever was requested further up. */
  flags |= c->do_sort;
337
338
339
340
341
  if (cleanup) {
    c->sorted = 0;
  } else {
    flags &= ~c->sorted;
  }
342
  if (flags == 0 && !c->do_sub_sort) return;
343
344

  /* Check that the particles have been moved to the current time */
Pedro Gonnet's avatar
Pedro Gonnet committed
345
346
  if (flags && !cell_are_part_drifted(c, r->e))
    error("Sorting un-drifted cell");
Pedro Gonnet's avatar
Pedro Gonnet committed
347

348
349
350
351
352
#ifdef SWIFT_DEBUG_CHECKS
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, c->sorted);

  /* Make sure the sort flags are consistent (upard). */
Pedro Gonnet's avatar
Pedro Gonnet committed
353
354
355
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
356
  }
357

358
359
  /* Update the sort timer which represents the last time the sorts
     were re-set. */
360
  if (c->sorted == 0) c->ti_sort = r->e->ti_current;
361
#endif
362

363
364
365
366
367
368
369
  /* start by allocating the entry arrays in the requested dimensions. */
  for (int j = 0; j < 13; j++) {
    if ((flags & (1 << j)) && c->sort[j] == NULL) {
      if ((c->sort[j] = (struct entry *)malloc(sizeof(struct entry) *
                                               (count + 1))) == NULL)
        error("Failed to allocate sort memory.");
    }
370
371
372
373
374
375
  }

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
376
    float dx_max_sort = 0.0f;
377
    float dx_max_sort_old = 0.0f;
378
    for (int k = 0; k < 8; k++) {
379
      if (c->progeny[k] != NULL) {
380
381
382
383
384
        /* Only propagate cleanup if the progeny is stale. */
        runner_do_sort(r, c->progeny[k], flags,
                       cleanup && (c->progeny[k]->dx_max_sort >
                                   space_maxreldx * c->progeny[k]->dmin),
                       0);
385
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
386
        dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
387
      }
388
    }
389
    c->dx_max_sort = dx_max_sort;
390
    c->dx_max_sort_old = dx_max_sort_old;
391
392

    /* Loop over the 13 different sort arrays. */
393
    for (int j = 0; j < 13; j++) {
394
395
396
397
398

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
399
      int off[8];
400
401
      off[0] = 0;
      for (int k = 1; k < 8; k++)
402
403
404
405
406
407
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
408
      int inds[8];
409
      for (int k = 0; k < 8; k++) {
410
411
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
412
          fingers[k] = c->progeny[k]->sort[j];
413
414
415
416
417
418
419
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
420
421
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
422
          if (buff[inds[k]] < buff[inds[i]]) {
423
            int temp_i = inds[i];
424
425
426
427
428
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
429
      struct entry *finger = c->sort[j];
430
      for (int ind = 0; ind < count; ind++) {
431
432
433
434
435
436
437
438
439
440

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
441
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
442
          int temp_i = inds[k - 1];
443
444
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
445
        }
446

447
448
449
      } /* Merge. */

      /* Add a sentinel. */
450
451
      c->sort[j][count].d = FLT_MAX;
      c->sort[j][count].i = 0;
452
453

      /* Mark as sorted. */
454
      atomic_or(&c->sorted, 1 << j);
455
456
457
458
459
460
461
462

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

463
    /* Reset the sort distance */
464
    if (c->sorted == 0) {
465
466
#ifdef SWIFT_DEBUG_CHECKS
      if (xparts != NULL && c->nodeID != engine_rank)
467
        error("Have non-NULL xparts in foreign cell");
468
#endif
469
470
471
472
473
474
475
476

      /* And the individual sort distances if we are a local cell */
      if (xparts != NULL) {
        for (int k = 0; k < count; k++) {
          xparts[k].x_diff_sort[0] = 0.0f;
          xparts[k].x_diff_sort[1] = 0.0f;
          xparts[k].x_diff_sort[2] = 0.0f;
        }
477
      }
478
479
      c->dx_max_sort_old = 0.f;
      c->dx_max_sort = 0.f;
480
481
    }

482
    /* Fill the sort array. */
483
    for (int k = 0; k < count; k++) {
484
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
485
      for (int j = 0; j < 13; j++)
486
        if (flags & (1 << j)) {
487
488
489
490
          c->sort[j][k].i = k;
          c->sort[j][k].d = px[0] * runner_shift[j][0] +
                            px[1] * runner_shift[j][1] +
                            px[2] * runner_shift[j][2];
491
        }
492
    }
493
494

    /* Add the sentinel and sort. */
495
    for (int j = 0; j < 13; j++)
496
      if (flags & (1 << j)) {
497
498
499
        c->sort[j][count].d = FLT_MAX;
        c->sort[j][count].i = 0;
        runner_do_sort_ascending(c->sort[j], count);
500
        atomic_or(&c->sorted, 1 << j);
501
502
503
      }
  }

504
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
505
  /* Verify the sorting. */
506
  for (int j = 0; j < 13; j++) {
507
    if (!(flags & (1 << j))) continue;
508
    struct entry *finger = c->sort[j];
509
    for (int k = 1; k < count; k++) {
510
511
512
513
514
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
515

516
517
518
519
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, flags);

  /* Make sure the sort flags are consistent (upward). */
Pedro Gonnet's avatar
Pedro Gonnet committed
520
521
522
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
523
  }
524
#endif
525

526
527
528
529
530
  /* Clear the cell's sort flags. */
  c->do_sort = 0;
  c->do_sub_sort = 0;
  c->requires_sorts = 0;

531
532
533
  if (clock) TIMER_TOC(timer_dosort);
}

534
/**
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Reset the gravity acceleration tensors */
556
  gravity_field_tensors_init(&c->multipole->pot, e->ti_current);
557
558
559
560
561
562
563
564
565
566
567

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

568
/**
569
570
571
572
573
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
574
 * @param timer Are we timing this ?
575
 */
576
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
577

578
#ifdef EXTRA_HYDRO_LOOP
579

580
581
  struct part *restrict parts = c->parts;
  const int count = c->count;
582
  const struct engine *e = r->e;
583

584
585
  TIMER_TIC;

586
  /* Anything to do here? */
587
  if (!cell_is_active(c, e)) return;
588

589
590
591
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
592
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
593
594
595
596
597
598
599
600
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

601
      if (part_is_active(p, e)) {
602
603
604
605
606
607

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
608

609
610
  if (timer) TIMER_TOC(timer_do_extra_ghost);

611
612
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
613
#endif
614
}
615

616
/**
617
618
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
619
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
620
 * @param r The runner thread.
621
 * @param c The cell.
622
 * @param timer Are we timing this ?
623
 */
624
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
625

Matthieu Schaller's avatar
Matthieu Schaller committed
626
627
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
628
  const struct engine *e = r->e;
629
  const struct space *s = e->s;
630
  const float hydro_h_max = e->hydro_properties->h_max;
631
632
633
  const float eps = e->hydro_properties->h_tolerance;
  const float hydro_eta_dim =
      pow_dimension(e->hydro_properties->eta_neighbours);
634
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
635
  int redo = 0, count = 0;
636

637
638
  TIMER_TIC;

639
  /* Anything to do here? */
640
  if (!cell_is_active(c, e)) return;
641

642
643
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
644
    for (int k = 0; k < 8; k++)
645
646
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
647

648
    /* Init the list of active particles that have to be updated. */
649
    int *pid = NULL;
650
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
651
      error("Can't allocate memory for pid.");
652
653
654
655
656
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
657

658
659
660
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
661

662
663
      /* Reset the redo-count. */
      redo = 0;
664

665
      /* Loop over the remaining active parts in this cell. */
666
      for (int i = 0; i < count; i++) {
667

668
        /* Get a direct pointer on the part. */
669
670
        struct part *p = &parts[pid[i]];
        struct xpart *xp = &xparts[pid[i]];
671

672
#ifdef SWIFT_DEBUG_CHECKS
673
        /* Is this part within the timestep? */
674
675
676
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

677
678
679
680
681
        /* Get some useful values */
        const float h_old = p->h;
        const float h_old_dim = pow_dimension(h_old);
        const float h_old_dim_minus_one = pow_dimension_minus_one(h_old);
        float h_new;
682

683
        if (p->density.wcount == 0.f) { /* No neighbours case */
684

685
686
687
          /* Double h and try again */
          h_new = 2.f * h_old;
        } else {
Matthieu Schaller's avatar
Matthieu Schaller committed
688

689
690
          /* Finish the density calculation */
          hydro_end_density(p);
691

692
693
694
695
696
697
698
          /* Compute one step of the Newton-Raphson scheme */
          const float n_sum = p->density.wcount * h_old_dim;
          const float n_target = hydro_eta_dim;
          const float f = n_sum - n_target;
          const float f_prime =
              p->density.wcount_dh * h_old_dim +
              hydro_dimension * p->density.wcount * h_old_dim_minus_one;
699

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
          h_new = h_old - f / f_prime;

#ifdef SWIFT_DEBUG_CHECKS
          if ((f > 0.f && h_new > h_old) || (f < 0.f && h_new < h_old))
            error(
                "Smoothing length correction not going in the right direction");
#endif

          /* Safety check: truncate to the range [ h_old/2 , 2h_old ]. */
          h_new = min(h_new, 2.f * h_old);
          h_new = max(h_new, 0.5f * h_old);
        }

        /* Check whether the particle has an inappropriate smoothing length */
        if (fabsf(h_new - h_old) > eps * h_old) {
715

716
          /* Ok, correct then */
717
          p->h = h_new;
718

719
720
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
721

722
723
724
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
725

726
            /* Re-initialise everything */
727
            hydro_init_part(p, &s->hs);
728
729
730
731
732
733
734

            /* Off we go ! */
            continue;
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
735
736
737
738

            /* Do some damage control if no neighbours at all were found */
            if (p->density.wcount == kernel_root * kernel_norm)
              hydro_part_has_no_neighbours(p, xp);
739
          }
740
        }
741

742
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
743

744
        /* As of here, particle force variables will be set. */
745

746
747
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
748

749
750
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
751

752
753
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
754
755
      }

756
757
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
758

759
760
761
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
762

763
764
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
765

766
767
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
Matthieu Schaller's avatar
Matthieu Schaller committed
768

769
770
771
772
#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
773

774
775
            /* Self-interaction? */
            if (l->t->type == task_type_self)
776
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH)
777
778
              runner_doself_subset_density_vec(r, finger, parts, pid, count);
#else
779
              runner_doself_subset_density(r, finger, parts, pid, count);
780
#endif
781

782
783
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
784

785
786
787
788
789
790
791
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
792

793
            }
794

795
796
797
798
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
799

800
801
802
803
804
805
806
807
808
809
810
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
811
812
813
          }
        }
      }
814
    }
815

816
817
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
818
      error("Smoothing length failed to converge on %i particles.", count);
819
820
    }
#else
821
    if (count)
822
      error("Smoothing length failed to converge on %i particles.", count);
823
#endif
824

825
826
827
    /* Be clean */
    free(pid);
  }
828

829
  if (timer) TIMER_TOC(timer_do_ghost);
830
831
}

832
/**
833
 * @brief Unskip any tasks associated with active cells.
834
835
 *
 * @param c The cell.
836
 * @param e The engine.
837
 */
838
static void runner_do_unskip(struct cell *c, struct engine *e) {
839

840
841
842
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

843
844
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;
845

846
  /* Recurse */
847
848
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
849
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
850
        struct cell *cp = c->progeny[k];
851
        runner_do_unskip(cp, e);
852
853
854
      }
    }
  }
855
856

  /* Unskip any active tasks. */
857
858
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
859
}
860

861
/**
862
 * @brief Mapper function to unskip active tasks.
863
864
865
866
867
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
868
869
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
870

871
  struct engine *e = (struct engine *)extra_data;
872
873
  struct space *s = e->s;
  int *local_cells = (int *)map_data;
Matthieu Schaller's avatar
Matthieu Schaller committed
874

875
  for (int ind = 0; ind < num_elements; ind++) {
876
    struct cell *c = &s->cells_top[local_cells[ind]];
877
    if (c != NULL) runner_do_unskip(c, e);
878
  }
879
}
880
/**
881
 * @brief Drift all part in a cell.
882
883
884
885
886
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
887
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
888

889
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
890

891
  cell_drift_part(c, r->e, 0);
892

893
894
895
896
897
898
899
900
901
902
903
904
905
906
  if (timer) TIMER_TOC(timer_drift_part);
}

/**
 * @brief Drift all gpart in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {

  TIMER_TIC;

907
  cell_drift_gpart(c, r->e, 0);
908
909

  if (timer) TIMER_TOC(timer_drift_gpart);
910
}
911

912
913
914
915
916
917