runner.c 48.2 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19

Pedro Gonnet's avatar
Pedro Gonnet committed
20
21
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
22
23
24
25
26
27
28
29
30
31
32

/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <omp.h>

33
34
35
36
37
/* MPI headers. */
#ifdef WITH_MPI
    #include <mpi.h>
#endif

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "const.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
40
#include "cycle.h"
41
#include "atomic.h"
42
#include "timers.h"
43
#include "const.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
44
#include "lock.h"
45
46
#include "task.h"
#include "part.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
47
#include "space.h"
48
#include "multipole.h"
49
#include "cell.h"
50
#include "queue.h"
51
#include "scheduler.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
52
#include "engine.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
53
#include "runner.h"
54
#include "error.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
55

56
57
58
59
60
61
/* Include the right variant of the SPH interactions */
#ifdef LEGACY_GADGET2_SPH
#include "runner_iact_legacy.h"
#else
#include "runner_iact.h"
#endif
62
#include "runner_iact_grav.h"
63

Pedro Gonnet's avatar
Pedro Gonnet committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/* Convert cell location to ID. */
#define cell_getid( cdim , i , j , k ) ( (int)(k) + (cdim)[2]*( (int)(j) + (cdim)[1]*(int)(i) ) )

/* The counters. */
int runner_counter[ runner_counter_count ];

        

const float runner_shift[13*3] = {
     5.773502691896258e-01 ,  5.773502691896258e-01 ,  5.773502691896258e-01 ,
     7.071067811865475e-01 ,  7.071067811865475e-01 ,  0.0                   ,
     5.773502691896258e-01 ,  5.773502691896258e-01 , -5.773502691896258e-01 ,
     7.071067811865475e-01 ,  0.0                   ,  7.071067811865475e-01 ,
     1.0                   ,  0.0                   ,  0.0                   ,
     7.071067811865475e-01 ,  0.0                   , -7.071067811865475e-01 ,
     5.773502691896258e-01 , -5.773502691896258e-01 ,  5.773502691896258e-01 ,
     7.071067811865475e-01 , -7.071067811865475e-01 ,  0.0                   ,
     5.773502691896258e-01 , -5.773502691896258e-01 , -5.773502691896258e-01 ,
     0.0                   ,  7.071067811865475e-01 ,  7.071067811865475e-01 ,
     0.0                   ,  1.0                   ,  0.0                   ,
     0.0                   ,  7.071067811865475e-01 , -7.071067811865475e-01 ,
     0.0                   ,  0.0                   ,  1.0                   ,
    };
const char runner_flip[27] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ,
                               0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 }; 


91
/* Import the density loop functions. */
92
93
94
#define FUNCTION density
#include "runner_doiact.h"

95
/* Import the force loop functions. */
96
97
98
99
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

100
101
102
/* Import the gravity loop functions. */
#include "runner_doiact_grav.h"

103

104
105
106
107
108
109
/**
 * @brief Send a local cell's particle data to another node.
 *
 * @param r The #runner.
 * @param c The #cell.
 * @param nodeID The destination node's ID.
110
 * @param tag bit to distinguish between xv and rho sends.
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
 */
 
void runner_dosend ( struct runner *r , struct cell *c , int nodeID , int tag ) {

#ifdef WITH_MPI

    MPI_Request req;
    
    /* First check if all the density tasks have been run. */
    if ( tag & 1 )
        if ( c->parts[0].rho == 0.0 )
            error( "Attempting to send rhos before ghost task completed." );
    
    /* Emit the isend. */
    if ( MPI_Isend( c->parts , sizeof(struct part) * c->count , MPI_BYTE , nodeID , tag , MPI_COMM_WORLD , &req ) != MPI_SUCCESS )
        error( "Failed to isend particle data." );
        
    message( "sending %i parts with tag=%i from %i to %i." ,
        c->count , tag , r->e->nodeID , nodeID ); fflush(stdout);
    
    /* Free the request handler as we don't care what happens next. */
    MPI_Request_free( &req );

#else
    error( "SWIFT was not compiled with MPI support." );
#endif

    }
    

Pedro Gonnet's avatar
Pedro Gonnet committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
 
void runner_dosort_ascending ( struct entry *sort , int N ) {

    struct {
        short int lo, hi;
        } qstack[10];
    int qpos, i, j, lo, hi, imin;
    struct entry temp;
    float pivot;
        
    /* Sort parts in cell_i in decreasing order with quicksort */
    qstack[0].lo = 0; qstack[0].hi = N - 1; qpos = 0;
    while ( qpos >= 0 ) {
        lo = qstack[qpos].lo; hi = qstack[qpos].hi;
        qpos -= 1;
        if ( hi - lo < 15 ) {
            for ( i = lo ; i < hi ; i++ ) {
                imin = i;
                for ( j = i+1 ; j <= hi ; j++ )
                    if ( sort[j].d < sort[imin].d )
                        imin = j;
                if ( imin != i ) {
                    temp = sort[imin]; sort[imin] = sort[i]; sort[i] = temp;
                    }
                }
            }
        else {
            pivot = sort[ ( lo + hi ) / 2 ].d;
            i = lo; j = hi;
            while ( i <= j ) {
                while ( sort[i].d < pivot ) i++;
                while ( sort[j].d > pivot ) j--;
                if ( i <= j ) {
                    if ( i < j ) {
                        temp = sort[i]; sort[i] = sort[j]; sort[j] = temp;
                        }
                    i += 1; j -= 1;
                    }
                }
            if ( j > ( lo + hi ) / 2 ) {
                if ( lo < j ) {
                    qpos += 1;
                    qstack[qpos].lo = lo;
                    qstack[qpos].hi = j;
                    }
                if ( i < hi ) {
                    qpos += 1;
                    qstack[qpos].lo = i;
                    qstack[qpos].hi = hi;
                    }
                }
            else {
                if ( i < hi ) {
                    qpos += 1;
                    qstack[qpos].lo = i;
                    qstack[qpos].hi = hi;
                    }
                if ( lo < j ) {
                    qpos += 1;
                    qstack[qpos].lo = lo;
                    qstack[qpos].hi = j;
                    }
                }
            }
        }
                
    }
    
    
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
221
 * @param flags Cell flag.
222
223
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
224
225
 */
 
226
void runner_dosort ( struct runner *r , struct cell *c , int flags , int clock ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
227
228
229

    struct entry *finger;
    struct entry *fingers[8];
Pedro Gonnet's avatar
Pedro Gonnet committed
230
    struct part *parts = c->parts;
231
    struct entry *sort;
Pedro Gonnet's avatar
Pedro Gonnet committed
232
    int j, k, count = c->count;
Pedro Gonnet's avatar
Pedro Gonnet committed
233
    int i, ind, off[8], inds[8], temp_i, missing;
234
    // float shift[3];
Pedro Gonnet's avatar
Pedro Gonnet committed
235
    float buff[8], px[3];
236
    
Pedro Gonnet's avatar
Pedro Gonnet committed
237
238
    TIMER_TIC
    
239
240
241
242
243
    /* Clean-up the flags, i.e. filter out what's already been sorted. */
    flags &= ~c->sorted;
    if ( flags == 0 )
        return;
    
Pedro Gonnet's avatar
Pedro Gonnet committed
244
    /* start by allocating the entry arrays. */
245
    if ( c->sort == NULL || c->sortsize < count ) {
246
247
        if ( c->sort != NULL )
            free( c->sort );
248
        c->sortsize = count * 1.1;
249
        if ( ( c->sort = (struct entry *)malloc( sizeof(struct entry) * (c->sortsize + 1) * 13 ) ) == NULL )
Pedro Gonnet's avatar
Pedro Gonnet committed
250
            error( "Failed to allocate sort memory." );
251
        }
252
    sort = c->sort;
Pedro Gonnet's avatar
Pedro Gonnet committed
253
254
255
256
        
    /* Does this cell have any progeny? */
    if ( c->split ) {
    
Pedro Gonnet's avatar
Pedro Gonnet committed
257
258
259
260
        /* Fill in the gaps within the progeny. */
        for ( k = 0 ; k < 8 ; k++ ) {
            if ( c->progeny[k] == NULL )
                continue;
261
            missing = flags & ~c->progeny[k]->sorted;
Pedro Gonnet's avatar
Pedro Gonnet committed
262
            if ( missing )
263
                runner_dosort( r , c->progeny[k] , missing , 0 );
Pedro Gonnet's avatar
Pedro Gonnet committed
264
265
266
267
            }
    
        /* Loop over the 13 different sort arrays. */
        for ( j = 0 ; j < 13 ; j++ ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
268
269
270
271
272
        
            /* Has this sort array been flagged? */
            if ( !( flags & (1 << j) ) )
                continue;
                
273
274
275
276
277
278
279
280
281
282
283
284
285
286
            /* Init the particle index offsets. */
            for ( off[0] = 0 , k = 1 ; k < 8 ; k++ )
                if ( c->progeny[k-1] != NULL )
                    off[k] = off[k-1] + c->progeny[k-1]->count;
                else
                    off[k] = off[k-1];

            /* Init the entries and indices. */
            for ( k = 0 ; k < 8 ; k++ ) {
                inds[k] = k;
                if ( c->progeny[k] != NULL && c->progeny[k]->count > 0 ) {
                    fingers[k] = &c->progeny[k]->sort[ j*(c->progeny[k]->count + 1) ];
                    buff[k] = fingers[k]->d;
                    off[k] = off[k];
Pedro Gonnet's avatar
Pedro Gonnet committed
287
                    }
288
289
                else
                    buff[k] = FLT_MAX;
Pedro Gonnet's avatar
Pedro Gonnet committed
290
291
                }

292
293
294
295
296
297
            /* Sort the buffer. */
            for ( i = 0 ; i < 7 ; i++ )
                for ( k = i+1 ; k < 8 ; k++ )
                    if ( buff[ inds[k] ] < buff[ inds[i] ] ) {
                        temp_i = inds[i]; inds[i] = inds[k]; inds[k] = temp_i;
                        }
Pedro Gonnet's avatar
Pedro Gonnet committed
298

299
            /* For each entry in the new sort list. */
300
            finger = &sort[ j*(count + 1) ];
301
            for ( ind = 0 ; ind < count ; ind++ ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
302

303
304
305
                /* Copy the minimum into the new sort array. */
                finger[ind].d = buff[inds[0]];
                finger[ind].i = fingers[inds[0]]->i + off[inds[0]];
Pedro Gonnet's avatar
Pedro Gonnet committed
306

307
308
309
                /* Update the buffer. */
                fingers[inds[0]] += 1;
                buff[inds[0]] = fingers[inds[0]]->d;
Pedro Gonnet's avatar
Pedro Gonnet committed
310

311
312
313
314
                /* Find the smallest entry. */
                for ( k = 1 ; k < 8 && buff[inds[k]] < buff[inds[k-1]] ; k++ ) {
                    temp_i = inds[k-1]; inds[k-1] = inds[k]; inds[k] = temp_i;
                    }
Pedro Gonnet's avatar
Pedro Gonnet committed
315

316
                } /* Merge. */
Pedro Gonnet's avatar
Pedro Gonnet committed
317
318
            
            /* Add a sentinel. */
319
320
            sort[ j*(count + 1) + count ].d = FLT_MAX;
            sort[ j*(count + 1) + count ].i = 0;
Pedro Gonnet's avatar
Pedro Gonnet committed
321
            
322
323
324
            /* Mark as sorted. */
            c->sorted |= ( 1 << j );
            
Pedro Gonnet's avatar
Pedro Gonnet committed
325
326
327
328
329
330
331
            } /* loop over sort arrays. */
    
        } /* progeny? */
        
    /* Otherwise, just sort. */
    else {
    
332
        /* Fill the sort array. */
Pedro Gonnet's avatar
Pedro Gonnet committed
333
        for ( k = 0 ; k < count ; k++ ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
334
335
336
            px[0] = parts[k].x[0];
            px[1] = parts[k].x[1];
            px[2] = parts[k].x[2];
337
338
            for ( j = 0 ; j < 13 ; j++ )
                if ( flags & (1 << j) ) {
339
340
                    sort[ j*(count + 1) + k].i = k;
                    sort[ j*(count + 1) + k].d = px[0]*runner_shift[ 3*j + 0 ] + px[1]*runner_shift[ 3*j + 1 ] + px[2]*runner_shift[ 3*j + 2 ];
341
                    }
Pedro Gonnet's avatar
Pedro Gonnet committed
342
            }
343
344

        /* Add the sentinel and sort. */
Pedro Gonnet's avatar
Pedro Gonnet committed
345
        for ( j = 0 ; j < 13 ; j++ )
346
            if ( flags & (1 << j) ) {
347
348
349
                sort[ j*(count + 1) + count ].d = FLT_MAX;
                sort[ j*(count + 1) + count ].i = 0;
                runner_dosort_ascending( &sort[ j*(count + 1) ] , count );
350
                c->sorted |= ( 1 << j );
Pedro Gonnet's avatar
Pedro Gonnet committed
351
352
353
354
355
356
357
358
                }
            
        }
        
    /* Verify the sorting. */
    /* for ( j = 0 ; j < 13 ; j++ ) {
        if ( !( flags & (1 << j) ) )
            continue;
359
360
        finger = &sort[ j*(count + 1) ];
        for ( k = 1 ; k < count ; k++ ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
361
362
            if ( finger[k].d < finger[k-1].d )
                error( "Sorting failed, ascending array." );
363
            if ( finger[k].i >= count )
Pedro Gonnet's avatar
Pedro Gonnet committed
364
365
366
                error( "Sorting failed, indices borked." );
            }
        } */
367
        
Pedro Gonnet's avatar
Pedro Gonnet committed
368
    #ifdef TIMER_VERBOSE
369
        message( "runner %02i: %i parts at depth %i (flags = %i%i%i%i%i%i%i%i%i%i%i%i%i) took %.3f ms." ,
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
            r->id , count , c->depth ,
            (flags & 0x1000) >> 12 , (flags & 0x800) >> 11 , (flags & 0x400) >> 10 , (flags & 0x200) >> 9 , (flags & 0x100) >> 8 , (flags & 0x80) >> 7 , (flags & 0x40) >> 6 , (flags & 0x20) >> 5 , (flags & 0x10) >> 4 , (flags & 0x8) >> 3 , (flags & 0x4) >> 2 , (flags & 0x2) >> 1 , (flags & 0x1) >> 0 , 
            ((double)TIMER_TOC(timer_dosort)) / CPU_TPS * 1000 ); fflush(stdout);
    #else
        if ( clock )
            TIMER_TOC(timer_dosort);
    #endif

    }
    
    
void runner_dogsort ( struct runner *r , struct cell *c , int flags , int clock ) {

    struct entry *finger;
    struct entry *fingers[8];
    struct gpart *gparts = c->gparts;
    struct entry *gsort;
    int j, k, count = c->gcount;
    int i, ind, off[8], inds[8], temp_i, missing;
    // float shift[3];
    float buff[8], px[3];
    
    TIMER_TIC
    
    /* Clean-up the flags, i.e. filter out what's already been sorted. */
    flags &= ~c->gsorted;
    if ( flags == 0 )
        return;
    
    /* start by allocating the entry arrays. */
    if ( c->gsort == NULL || c->gsortsize < count ) {
        if ( c->gsort != NULL )
            free( c->gsort );
        c->gsortsize = count * 1.1;
        if ( ( c->gsort = (struct entry *)malloc( sizeof(struct entry) * (c->gsortsize + 1) * 13 ) ) == NULL )
            error( "Failed to allocate sort memory." );
        }
    gsort = c->gsort;
        
    /* Does this cell have any progeny? */
    if ( c->split ) {
    
        /* Fill in the gaps within the progeny. */
        for ( k = 0 ; k < 8 ; k++ ) {
            if ( c->progeny[k] == NULL )
                continue;
            missing = flags & ~c->progeny[k]->gsorted;
            if ( missing )
                runner_dogsort( r , c->progeny[k] , missing , 0 );
            }
    
        /* Loop over the 13 different sort arrays. */
        for ( j = 0 ; j < 13 ; j++ ) {
        
            /* Has this sort array been flagged? */
            if ( !( flags & (1 << j) ) )
                continue;
                
            /* Init the particle index offsets. */
            for ( off[0] = 0 , k = 1 ; k < 8 ; k++ )
                if ( c->progeny[k-1] != NULL )
                    off[k] = off[k-1] + c->progeny[k-1]->gcount;
                else
                    off[k] = off[k-1];

            /* Init the entries and indices. */
            for ( k = 0 ; k < 8 ; k++ ) {
                inds[k] = k;
                if ( c->progeny[k] != NULL && c->progeny[k]->gcount > 0 ) {
                    fingers[k] = &c->progeny[k]->gsort[ j*(c->progeny[k]->gcount + 1) ];
                    buff[k] = fingers[k]->d;
                    off[k] = off[k];
                    }
                else
                    buff[k] = FLT_MAX;
                }

            /* Sort the buffer. */
            for ( i = 0 ; i < 7 ; i++ )
                for ( k = i+1 ; k < 8 ; k++ )
                    if ( buff[ inds[k] ] < buff[ inds[i] ] ) {
                        temp_i = inds[i]; inds[i] = inds[k]; inds[k] = temp_i;
                        }

            /* For each entry in the new sort list. */
            finger = &gsort[ j*(count + 1) ];
            for ( ind = 0 ; ind < count ; ind++ ) {

                /* Copy the minimum into the new sort array. */
                finger[ind].d = buff[inds[0]];
                finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

                /* Update the buffer. */
                fingers[inds[0]] += 1;
                buff[inds[0]] = fingers[inds[0]]->d;

                /* Find the smallest entry. */
                for ( k = 1 ; k < 8 && buff[inds[k]] < buff[inds[k-1]] ; k++ ) {
                    temp_i = inds[k-1]; inds[k-1] = inds[k]; inds[k] = temp_i;
                    }

                } /* Merge. */
            
            /* Add a sentinel. */
            gsort[ j*(count + 1) + count ].d = FLT_MAX;
            gsort[ j*(count + 1) + count ].i = 0;
            
            /* Mark as sorted. */
            c->gsorted |= ( 1 << j );
            
            } /* loop over sort arrays. */
    
        } /* progeny? */
        
    /* Otherwise, just sort. */
    else {
    
        /* Fill the sort array. */
        for ( k = 0 ; k < count ; k++ ) {
            px[0] = gparts[k].x[0];
            px[1] = gparts[k].x[1];
            px[2] = gparts[k].x[2];
            for ( j = 0 ; j < 13 ; j++ )
                if ( flags & (1 << j) ) {
                    gsort[ j*(count + 1) + k].i = k;
                    gsort[ j*(count + 1) + k].d = px[0]*runner_shift[ 3*j + 0 ] + px[1]*runner_shift[ 3*j + 1 ] + px[2]*runner_shift[ 3*j + 2 ];
                    }
            }

        /* Add the sentinel and sort. */
        for ( j = 0 ; j < 13 ; j++ )
            if ( flags & (1 << j) ) {
                gsort[ j*(count + 1) + count ].d = FLT_MAX;
                gsort[ j*(count + 1) + count ].i = 0;
                runner_dosort_ascending( &gsort[ j*(count + 1) ] , count );
                c->gsorted |= ( 1 << j );
                }
            
        }
        
    /* Verify the sorting. */
    /* for ( j = 0 ; j < 13 ; j++ ) {
        if ( !( flags & (1 << j) ) )
            continue;
        finger = &c->gsort[ j*(count + 1) ];
        for ( k = 1 ; k < count ; k++ ) {
            if ( finger[k].d < finger[k-1].d )
                error( "Sorting failed, ascending array." );
            if ( finger[k].i < 0 || finger[k].i >= count )
                error( "Sorting failed, indices borked." );
            }
        } */
        
    #ifdef TIMER_VERBOSE
        message( "runner %02i: %i parts at depth %i (flags = %i%i%i%i%i%i%i%i%i%i%i%i%i) took %.3f ms." ,
            r->id , count , c->depth ,
Pedro Gonnet's avatar
Pedro Gonnet committed
526
            (flags & 0x1000) >> 12 , (flags & 0x800) >> 11 , (flags & 0x400) >> 10 , (flags & 0x200) >> 9 , (flags & 0x100) >> 8 , (flags & 0x80) >> 7 , (flags & 0x40) >> 6 , (flags & 0x20) >> 5 , (flags & 0x10) >> 4 , (flags & 0x8) >> 3 , (flags & 0x4) >> 2 , (flags & 0x2) >> 1 , (flags & 0x1) >> 0 , 
527
            ((double)TIMER_TOC(timer_dosort)) / CPU_TPS * 1000 ); fflush(stdout);
Pedro Gonnet's avatar
Pedro Gonnet committed
528
    #else
529
530
        if ( clock )
            TIMER_TOC(timer_dosort);
Pedro Gonnet's avatar
Pedro Gonnet committed
531
532
533
    #endif

    }
534
535
536
537
538
    
    
/**
 * @brief Intermediate task between density and force
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
539
 * @param r The runner thread.
540
 * @param c The cell.
541
542
 */
 
Pedro Gonnet's avatar
Pedro Gonnet committed
543
void runner_doghost ( struct runner *r , struct cell *c ) {
544

545
    struct part *p, *parts = c->parts;
546
    struct cell *finger;
Pedro Gonnet's avatar
Pedro Gonnet committed
547
548
    int i, k, redo, count = c->count;
    int *pid;
549
    float h, ih, ih2, ih4, h_corr, rho, wcount, rho_dh, wcount_dh, u, fc;
550
    float normDiv_v, normCurl_v;
551
552
553
#ifndef LEGACY_GADGET2_SPH
    float alpha_dot, tau, S;   
#endif
554
    float dt_step = r->e->dt_step;
555
556
    TIMER_TIC
    
Pedro Gonnet's avatar
Pedro Gonnet committed
557
558
559
560
561
562
563
    /* Recurse? */
    if ( c->split ) {
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL )
                runner_doghost( r , c->progeny[k] );
        return;
        }
564
        
Pedro Gonnet's avatar
Pedro Gonnet committed
565
566
567
568
569
570
571
572
    /* Init the IDs that have to be updated. */
    if ( ( pid = (int *)alloca( sizeof(int) * count ) ) == NULL )
        error( "Call to alloca failed." );
    for ( k = 0 ; k < count ; k++ )
        pid[k] = k;
        
    /* While there are particles that need to be updated... */
    while ( count > 0 ) {
573
    
Pedro Gonnet's avatar
Pedro Gonnet committed
574
575
        /* Reset the redo-count. */
        redo = 0;
576
    
Pedro Gonnet's avatar
Pedro Gonnet committed
577
        /* Loop over the parts in this cell. */
578
579
580
581
582
583
        __builtin_prefetch( &parts[ pid[0] ] , 0 , 1 );
        __builtin_prefetch( &parts[ pid[0] ].rho_dh , 0 , 1 );
        __builtin_prefetch( &parts[ pid[1] ] , 0 , 1 );
        __builtin_prefetch( &parts[ pid[1] ].rho_dh , 0 , 1 );
        __builtin_prefetch( &parts[ pid[2] ] , 0 , 1 );
        __builtin_prefetch( &parts[ pid[2] ].rho_dh , 0 , 1 );
Pedro Gonnet's avatar
Pedro Gonnet committed
584
585
586
        for ( i = 0 ; i < count ; i++ ) {

            /* Get a direct pointer on the part. */
587
588
589
            __builtin_prefetch( &parts[ pid[i+3] ] , 0 , 1 );
            __builtin_prefetch( &parts[ pid[i+3] ].rho_dh , 0 , 1 );
            p = &parts[ pid[i] ];
590
            
591
            /* Is this part within the timestep? */
Pedro Gonnet's avatar
Pedro Gonnet committed
592
            if ( p->dt <= dt_step ) {
Pedro Gonnet's avatar
Pedro Gonnet committed
593
            
594
595
	            /* Some smoothing length multiples. */
	            h = p->h;
596
597
598
                ih = 1.0f / h;
                ih2 = ih * ih;
                ih4 = ih2 * ih2;
599

600
		        /* Final operation on the density. */
601
                p->rho = rho = ih * ih2 * ( p->rho + p->mass*kernel_root );
Pedro Gonnet's avatar
Pedro Gonnet committed
602
                p->rho_dh = rho_dh = ( p->rho_dh - 3.0f*p->mass*kernel_root ) * ih4;
603
604
                wcount = ( p->density.wcount + kernel_root ) * ( 4.0f / 3.0 * M_PI * kernel_gamma3 );
                wcount_dh = p->density.wcount_dh * ih * ( 4.0f / 3.0 * M_PI * kernel_gamma3 );
Pedro Gonnet's avatar
Pedro Gonnet committed
605
                    
Pedro Gonnet's avatar
Pedro Gonnet committed
606
                /* If no derivative, double the smoothing length. */
607
                if ( wcount_dh == 0.0f )
608
                    h_corr = p->h;
Pedro Gonnet's avatar
Pedro Gonnet committed
609
610
                    
                /* Otherwise, compute the smoothing length update (Newton step). */
611
                else {
612
                    h_corr = ( kernel_nwneigh - wcount ) / wcount_dh;
613
614
615

                    /* Truncate to the range [ -p->h/2 , p->h ]. */
                    h_corr = fminf( h_corr , h );
616
                    h_corr = fmaxf( h_corr , -h/2.f );
Pedro Gonnet's avatar
Pedro Gonnet committed
617
                    
618
                    }
619
                
Pedro Gonnet's avatar
Pedro Gonnet committed
620
                /* Apply the correction to p->h and to the compact part. */
621
                p->h += h_corr;
622
623

                /* Did we get the right number density? */
624
625
                if ( wcount > kernel_nwneigh + const_delta_nwneigh ||
                     wcount < kernel_nwneigh - const_delta_nwneigh ) {
626
                    // message( "particle %lli (h=%e,depth=%i) has bad wcount=%.3f." , p->id , p->h , c->depth , wcount ); fflush(stdout);
627
                    // p->h += ( p->density.wcount + kernel_root - kernel_nwneigh ) / p->density.wcount_dh;
628
629
                    pid[redo] = pid[i];
                    redo += 1;
630
                    p->density.wcount = 0.0;
631
                    p->density.wcount_dh = 0.0;
632
633
                    p->rho = 0.0;
                    p->rho_dh = 0.0;
634
635
636
		            p->density.div_v = 0.0;
		            for ( k=0 ; k < 3 ; k++)
		                p->density.curl_v[k] = 0.0;
637
638
                    continue;
                    }
639

640
                /* Pre-compute some stuff for the balsara switch. */
641
642
		        normDiv_v = fabs( p->density.div_v / rho * ih4 );
		        normCurl_v = sqrtf( p->density.curl_v[0] * p->density.curl_v[0] + p->density.curl_v[1] * p->density.curl_v[1] + p->density.curl_v[2] * p->density.curl_v[2] ) / rho * ih4;
643
                
Pedro Gonnet's avatar
Pedro Gonnet committed
644
645
646
                /* As of here, particle force variables will be set. Do _NOT_
                   try to read any particle density variables! */
                
647
                /* Compute this particle's sound speed. */
648
                u = p->u;
649
                p->force.c = fc = sqrtf( const_hydro_gamma * ( const_hydro_gamma - 1.0f ) * u );
650
651

                /* Compute the P/Omega/rho2. */
652
                p->force.POrho2 = u * ( const_hydro_gamma - 1.0f ) / ( rho + h * rho_dh / 3.0f );
653

654
655
		        /* Balsara switch */
		        p->force.balsara = normDiv_v / ( normDiv_v + normCurl_v + 0.0001f * fc * ih );
656

657
658
659
                #ifndef LEGACY_GADGET2_SPH
		            /* Viscosity parameter decay time */
		            tau = h / ( 2.f * const_viscosity_length * p->force.c );
660

661
662
		            /* Viscosity source term */
		            S = fmaxf( -normDiv_v, 0.f );
663

664
665
		            /* Compute the particle's viscosity parameter time derivative */
		            alpha_dot = ( const_viscosity_alpha_min - p->alpha ) / tau + ( const_viscosity_alpha_max - p->alpha ) * S;
666

667
668
669
		            /* Update particle's viscosity paramter */
		            p->alpha += alpha_dot * p->dt; 
                #endif                
670

671
672
673
                /* Reset the acceleration. */
                for ( k = 0 ; k < 3 ; k++ )
                    p->a[k] = 0.0f;
Pedro Gonnet's avatar
Pedro Gonnet committed
674

675
                /* Reset the time derivatives. */
676
677
678
                p->force.u_dt = 0.0f;
                p->force.h_dt = 0.0f;
                p->force.v_sig = 0.0f;
Pedro Gonnet's avatar
Pedro Gonnet committed
679

680
                }
Pedro Gonnet's avatar
Pedro Gonnet committed
681
682

            }
683
            
Pedro Gonnet's avatar
Pedro Gonnet committed
684
685
        /* Re-set the counter for the next loop (potentially). */
        count = redo;
686
687
688
689
690
691
692
693
        if ( count > 0 ) {
        
            // error( "Bad smoothing length, fixing this isn't implemented yet." );
            
            /* Climb up the cell hierarchy. */
            for ( finger = c ; finger != NULL ; finger = finger->parent ) {
            
                /* Run through this cell's density interactions. */
694
                for ( struct link *l = finger->density ; l != NULL ; l = l->next ) {
695
696
                
                    /* Self-interaction? */
697
                    if ( l->t->type == task_type_self )
698
                        runner_doself_subset_density( r , finger , parts , pid , count );
699
700
                        
                    /* Otherwise, pair interaction? */
701
                    else if ( l->t->type == task_type_pair ) {
702
703
                    
                        /* Left or right? */
704
705
                        if ( l->t->ci == finger )
                            runner_dopair_subset_density( r , finger , parts , pid , count , l->t->cj );
706
                        else
707
                            runner_dopair_subset_density( r , finger , parts , pid , count , l->t->ci );
708
709
710
711
                        
                        }
                
                    /* Otherwise, sub interaction? */
712
                    else if ( l->t->type == task_type_sub ) {
713
714
                    
                        /* Left or right? */
715
716
                        if ( l->t->ci == finger )
                            runner_dosub_subset_density( r , finger , parts , pid , count , l->t->cj , -1 , 1 );
717
                        else
718
                            runner_dosub_subset_density( r , finger , parts , pid , count , l->t->ci , -1 , 1 );
719
720
                        
                        }
721
722
                
                    }
Pedro Gonnet's avatar
Pedro Gonnet committed
723
                    
724
725
726
                }
        
            }
727
728
729
730
            
        }

    #ifdef TIMER_VERBOSE
731
        message( "runner %02i: %i parts at depth %i took %.3f ms." ,
Pedro Gonnet's avatar
Pedro Gonnet committed
732
            r->id , c->count , c->depth ,
733
            ((double)TIMER_TOC(timer_doghost)) / CPU_TPS * 1000 ); fflush(stdout);
734
    #else
735
        TIMER_TOC(timer_doghost);
736
737
738
    #endif
    
    }
739
740
741
742
743
744
745
746
747
748
749
    
    
/**
 * @brief Compute the second kick of the given cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 */
 
void runner_dokick2 ( struct runner *r , struct cell *c ) {

750
    int j, k, count = 0, nr_parts = c->count;
751
    float dt_min = FLT_MAX, dt_max = 0.0f;
Pedro Gonnet's avatar
Pedro Gonnet committed
752
    double ekin = 0.0, epot = 0.0;
753
    float mom[3] = { 0.0f , 0.0f , 0.0f }, ang[3] = { 0.0f , 0.0f , 0.0f };
754
    float x[3], v_hdt[3], u_hdt, h, pdt, m;
755
    float dt_step = r->e->dt_step, dt = r->e->dt, hdt, idt;
756
757
    float dt_cfl, dt_h_change, dt_u_change, dt_new;
    float h_dt, u_dt;
758
    struct part *restrict p, *restrict parts = c->parts;
759
    struct xpart *restrict xp, *restrict xparts = c->xparts;
760
761
762
    
    TIMER_TIC
    
763
764
    /* Init idt to avoid compiler stupidity. */
    idt = ( dt > 0 ) ? 1.0f / dt : 0.0f;
765
    hdt = dt / 2;
766
    
767
    /* Loop over the particles and kick them. */
Pedro Gonnet's avatar
Pedro Gonnet committed
768
769
770
771
772
773
774
775
776
    __builtin_prefetch( &parts[0] , 0 , 1 );
    __builtin_prefetch( &parts[0].rho_dh , 0 , 1 );
    __builtin_prefetch( &xparts[0] , 0 , 1 );
    __builtin_prefetch( &parts[1] , 0 , 1 );
    __builtin_prefetch( &parts[1].rho_dh , 0 , 1 );
    __builtin_prefetch( &xparts[1] , 0 , 1 );
    __builtin_prefetch( &parts[2] , 0 , 1 );
    __builtin_prefetch( &parts[2].rho_dh , 0 , 1 );
    __builtin_prefetch( &xparts[2] , 0 , 1 );
777
778
779
    for ( k = 0 ; k < nr_parts ; k++ ) {

        /* Get a handle on the part. */
Pedro Gonnet's avatar
Pedro Gonnet committed
780
781
782
        __builtin_prefetch( &parts[k+3] , 0 , 1 );
        __builtin_prefetch( &parts[k+3].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[k+3] , 0 , 1 );
783
        p = &parts[k];
784
        xp = &xparts[k];
785
786
787
788
789

        /* Get local copies of particle data. */
        pdt = p->dt;
        m = p->mass;
        x[0] = p->x[0]; x[1] = p->x[1]; x[2] = p->x[2];
790
791
        v_hdt[0] = xp->v_hdt[0]; v_hdt[1] = xp->v_hdt[1]; v_hdt[2] = xp->v_hdt[2];
        u_hdt = xp->u_hdt;
792

793
        /* Update the particle's data (if active). */
794
        if ( pdt <= dt_step ) {
795
796
            
            /* Increase the number of particles updated. */
797
            count += 1;
798
799
800
801
            
            /* Scale the derivatives as they're freshly computed. */
            h = p->h;
            h_dt = p->force.h_dt *= h * 0.333333333f;
Pedro Gonnet's avatar
Pedro Gonnet committed
802
            xp->omega = 1.0f + h * p->rho_dh / p->rho * 0.3333333333f;
803
804
805
806
807
808
809
810
811
812
813
814
815
            
            /* Compute the new time step. */
            u_dt = p->force.u_dt;
            dt_cfl = const_cfl * h / p->force.v_sig;
            dt_h_change = ( h_dt != 0.0f ) ? fabsf( const_ln_max_h_change * h / h_dt ) : FLT_MAX;
            dt_u_change = ( u_dt != 0.0f ) ? fabsf( const_max_u_change * p->u / u_dt ) : FLT_MAX;
            dt_new = fminf( dt_cfl , fminf( dt_h_change , dt_u_change ) );
            if ( pdt == 0.0f )
                p->dt = pdt = dt_new;
            else
                p->dt = pdt = fminf( dt_new , 2.0f*pdt );
                
            /* Update positions and energies at the full step. */
816
817
818
819
            p->v[0] = v_hdt[0] + hdt * p->a[0];
            p->v[1] = v_hdt[1] + hdt * p->a[1];
            p->v[2] = v_hdt[2] + hdt * p->a[2];
            p->u = u_hdt + hdt * u_dt;
820
821
822
            
            /* Set the new particle-specific time step. */
            if ( dt > 0.0f ) {
823
                float dt_curr = dt;
824
825
826
827
828
829
830
831
                j = (int)( pdt * idt );
                while ( j > 1 ) {
                    dt_curr *= 2.0f;
                    j >>= 1;
                    }
                xp->dt_curr = dt_curr;
                }
            
832
833
834
835
836
837
838
            }

        /* Get the smallest/largest dt. */
        dt_min = fminf( dt_min , pdt );
        dt_max = fmaxf( dt_max , pdt );

        /* Collect total energy. */
839
840
        ekin += 0.5 * m * ( v_hdt[0]*v_hdt[0] + v_hdt[1]*v_hdt[1] + v_hdt[2]*v_hdt[2] );
        epot += m * u_hdt;
841
842

        /* Collect momentum */
843
844
845
        mom[0] += m * v_hdt[0];
        mom[1] += m * v_hdt[1];
        mom[2] += m * v_hdt[2];
846
847

	    /* Collect angular momentum */
848
849
850
	    ang[0] += m * ( x[1]*v_hdt[2] - x[2]*v_hdt[1] );
	    ang[1] += m * ( x[2]*v_hdt[0] - x[0]*v_hdt[2] );
	    ang[2] += m * ( x[0]*v_hdt[1] - x[1]*v_hdt[0] );
851
852
853
854
855
856
857

	    /* Collect entropic function */
	    // lent += u * pow( p->rho, 1.f-const_gamma );

        }

    #ifdef TIMER_VERBOSE
858
        message( "runner %02i: %i parts at depth %i took %.3f ms." ,
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
            r->id , c->count , c->depth ,
            ((double)TIMER_TOC(timer_kick2)) / CPU_TPS * 1000 ); fflush(stdout);
    #else
        TIMER_TOC(timer_kick2);
    #endif
        
    /* Store the computed values in the cell. */
    c->dt_min = dt_min;
    c->dt_max = dt_max;
    c->updated = count;
    c->ekin = ekin;
    c->epot = epot;
    c->mom[0] = mom[0]; c->mom[1] = mom[1]; c->mom[2] = mom[2];
    c->ang[0] = ang[0]; c->ang[1] = ang[1]; c->ang[2] = ang[2];
        
    }
Pedro Gonnet's avatar
Pedro Gonnet committed
875
876


877
878
879
880
881
882
883
884
885
/**
 * @brief Mapping function to set dt_min and dt_max, do the first
 * kick.
 */

void runner_dokick1 ( struct runner *r , struct cell *c ) {

    int j, k;
    struct engine *e = r->e;
886
    float pdt, dt_step = e->dt_step, dt = e->dt, hdt = dt/2;
887
    float dt_min, dt_max, h_max, dx, dx_max;
888
    float a[3], v[3], u, u_dt, h, h_dt, w, rho;
889
    double x[3], x_old[3];
890
    struct part *restrict p, *restrict parts = c->parts;
891
    struct xpart *restrict xp, *restrict xparts = c->xparts;
892
893
894
895
896
897
898
899
900
901
902

    /* No children? */
    if ( !c->split ) {
    
        /* Init the min/max counters. */
        dt_min = FLT_MAX;
        dt_max = 0.0f;
        h_max = 0.0f;
        dx_max = 0.0f;
    
        /* Loop over parts. */
Pedro Gonnet's avatar
Pedro Gonnet committed
903
904
905
906
907
908
909
910
911
        __builtin_prefetch( &parts[0] , 0 , 1 );
        __builtin_prefetch( &parts[0].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[0] , 0 , 1 );
        __builtin_prefetch( &parts[1] , 0 , 1 );
        __builtin_prefetch( &parts[1].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[1] , 0 , 1 );
        __builtin_prefetch( &parts[2] , 0 , 1 );
        __builtin_prefetch( &parts[2].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[2] , 0 , 1 );
912
913
914
        for ( k = 0 ; k < c->count ; k++ ) {
            
            /* Get a handle on the kth particle. */
Pedro Gonnet's avatar
Pedro Gonnet committed
915
916
917
            __builtin_prefetch( &parts[k+3] , 0 , 1 );
            __builtin_prefetch( &parts[k+3].rho_dh , 0 , 1 );
            __builtin_prefetch( &xparts[k+3] , 0 , 1 );
918
919
            p = &parts[k];
            xp = &xparts[k];
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
            
            /* Load the data locally. */
            a[0] = p->a[0]; a[1] = p->a[1]; a[2] = p->a[2];
            v[0] = p->v[0]; v[1] = p->v[1]; v[2] = p->v[2];
            x[0] = p->x[0]; x[1] = p->x[1]; x[2] = p->x[2];
            x_old[0] = xp->x_old[0]; x_old[1] = xp->x_old[1]; x_old[2] = xp->x_old[2];
            h = p->h;
            u = p->u;
            h_dt = p->force.h_dt;
            u_dt = p->force.u_dt;
            pdt = p->dt;
            
            /* Store the min/max dt. */
            dt_min = fminf( dt_min , pdt );
            dt_max = fmaxf( dt_max , pdt );
            
936
937
938
939
940
941
            /* Update the half-step velocities from the current velocities. */
            xp->v_hdt[0] = v[0] + hdt * a[0];
            xp->v_hdt[1] = v[1] + hdt * a[1];
            xp->v_hdt[2] = v[2] + hdt * a[2];
            xp->u_hdt = u + hdt * u_dt;
            
942
943
944
945
            /* Move the particles with the velocities at the half-step. */
            p->x[0] = x[0] += dt * xp->v_hdt[0];
            p->x[1] = x[1] += dt * xp->v_hdt[1];
            p->x[2] = x[2] += dt * xp->v_hdt[2];
946
947
948
949
950
951
            dx = sqrtf( (x[0] - x_old[0])*(x[0] - x_old[0]) +
                        (x[1] - x_old[1])*(x[1] - x_old[1]) +
                        (x[2] - x_old[2])*(x[2] - x_old[2]) );
            dx_max = fmaxf( dx_max , dx );

            /* Update positions and energies at the half-step. */
952
953
954
            p->v[0] = v[0] + dt * a[0];
            p->v[1] = v[1] + dt * a[1];
            p->v[2] = v[2] + dt * a[2];
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
            w = u_dt / u * dt;
            if ( fabsf( w ) < 0.01f )
                p->u = u *= 1.0f + w*( 1.0f + w*( 0.5f + w*( 1.0f/6.0f + 1.0f/24.0f*w ) ) );
            else
                p->u = u *= expf( w );
            w = h_dt / h * dt;
            if ( fabsf( w ) < 0.01f )
                p->h = h *= 1.0f + w*( 1.0f + w*( 0.5f + w*( 1.0f/6.0f + 1.0f/24.0f*w ) ) );
            else
                p->h = h *= expf( w );
            h_max = fmaxf( h_max , h );

        
            /* Integrate other values if this particle will not be updated. */
            /* Init fields for density calculation. */
            if ( pdt > dt_step ) {
                float w = -3.0f * h_dt / h * dt;
                if ( fabsf( w ) < 0.1f )
                    rho = p->rho *= 1.0f + w*( 1.0f + w*( 0.5f + w*(1.0f/6.0f + 1.0f/24.0f*w ) ) );
                else
                    rho = p->rho *= expf( w );
                p->force.POrho2 = u * ( const_hydro_gamma - 1.0f ) / ( rho * xp->omega );
                }
            else {
                p->density.wcount = 0.0f;
                p->density.wcount_dh = 0.0f;
                p->rho = 0.0f;
                p->rho_dh = 0.0f;
	            p->density.div_v = 0.0f;
	            for ( j = 0 ; j < 3 ; ++j)
	                p->density.curl_v[j] = 0.0f;
                }
                
            }
            
        }
        
    /* Otherwise, agregate data from children. */
    else {
    
        /* Init with the first non-null child. */
        dt_min = FLT_MAX;
        dt_max = 0.0f;
        h_max = 0.0f;
        dx_max = 0.0f;
        
        /* Loop over the progeny. */
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL ) {
1004
1005
                if ( c->count < space_subsize )
                    runner_dokick1( r , c->progeny[k] );
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
                dt_min = fminf( dt_min , c->progeny[k]->dt_min );
                dt_max = fmaxf( dt_max , c->progeny[k]->dt_max );
                h_max = fmaxf( h_max , c->progeny[k]->h_max );
                dx_max = fmaxf( dx_max , c->progeny[k]->dx_max );
                }
    
        }

    /* Store the values. */
    c->dt_min = dt_min;
    c->dt_max = dt_max;
    c->h_max = h_max;
    c->dx_max = dx_max;
    
    }


1023
1024
1025
1026
1027
/**
 * @brief Combined second and first kick for fixed dt.
 *
 * @param r The runner thread.
 * @param c The cell.
1028
 * @param timer The timer 
1029
1030
1031
1032
1033
1034
1035
1036
1037
 */
 
void runner_dokick ( struct runner *r , struct cell *c , int timer ) {

    int k, count = 0, nr_parts = c->count, updated;
    float dt_min = FLT_MAX, dt_max = 0.0f;
    float h_max, dx, dx_max;
    double ekin = 0.0, epot = 0.0;
    float mom[3] = { 0.0f , 0.0f , 0.0f }, ang[3] = { 0.0f , 0.0f , 0.0f };
1038
    float x[3], x_old[3], v_hdt[3], a[3], u, u_hdt, h, pdt, m, w;
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
    float dt = r->e->dt, hdt = 0.5f*dt;
    float dt_cfl, dt_h_change, dt_u_change, dt_new;
    float h_dt, u_dt;
    struct part *restrict p, *restrict parts = c->parts;
    struct xpart *restrict xp, *restrict xparts = c->xparts;
    
    TIMER_TIC
    
    /* No children? */
    if ( !c->split ) {
    
        /* Init the min/max counters. */
        dt_min = FLT_MAX;
        dt_max = 0.0f;
        h_max = 0.0f;
        dx_max = 0.0f;
    
        /* Loop over the particles and kick them. */
        __builtin_prefetch( &parts[0] , 0 , 1 );
        __builtin_prefetch( &parts[0].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[0] , 0 , 1 );
        __builtin_prefetch( &parts[1] , 0 , 1 );
        __builtin_prefetch( &parts[1].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[1] , 0 , 1 );
        __builtin_prefetch( &parts[2] , 0 , 1 );
        __builtin_prefetch( &parts[2].rho_dh , 0 , 1 );
        __builtin_prefetch( &xparts[2] , 0 , 1 );
        for ( k = 0 ; k < nr_parts ; k++ ) {

            /* Get a handle on the part. */
            __builtin_prefetch( &parts[k+3] , 0 , 1 );
            __builtin_prefetch( &parts[k+3].rho_dh , 0 , 1 );
            __builtin_prefetch( &xparts[k+3] , 0 , 1 );
            p = &parts[k];
            xp = &xparts[k];

            /* Get local copies of particle data. */
            pdt = p->dt;
            u_dt = p->force.u_dt;
            h = p->h;
            m = p->mass;
            x[0] = p->x[0]; x[1] = p->x[1]; x[2] = p->x[2];
            a[0] = p->a[0]; a[1] = p->a[1]; a[2] = p->a[2];
            x_old[0] = xp->x_old[0]; x_old[1] = xp->x_old[1]; x_old[2] = xp->x_old[2];
1083
1084
            v_hdt[0] = xp->v_hdt[0]; v_hdt[1] = xp->v_hdt[1]; v_hdt[2] = xp->v_hdt[2];
            u_hdt = xp->u_hdt;
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

            /* Scale the derivatives if they're freshly computed. */
            h_dt = p->force.h_dt *= h * 0.333333333f;
            count += 1;
            xp->omega = 1.0f + h * p->rho_dh / p->rho * 0.3333333333f;

            /* Update the particle's time step. */
            dt_cfl = const_cfl * h / p->force.v_sig;
            dt_h_change = ( h_dt != 0.0f ) ? fabsf( const_ln_max_h_change * h / h_dt ) : FLT_MAX;
            dt_u_change = ( u_dt != 0.0f ) ? fabsf( const_max_u_change * p->u / u_dt ) : FLT_MAX;
            dt_new = fminf( dt_cfl , fminf( dt_h_change , dt_u_change ) );
            if ( pdt == 0.0f )
                p->dt = pdt = dt_new;
            else
                p->dt = pdt = fminf( dt_new , 2.0f*pdt );

            /* Get the smallest/largest dt. */
            dt_min = fminf( dt_min , pdt );
            dt_max = fmaxf( dt_max , pdt );

            /* Step and store the velocity and internal energy. */
1106
1107
1108
1109
            xp->v_hdt[0] = ( v_hdt[0] += dt * a[0] );
            xp->v_hdt[1] = ( v_hdt[1] += dt * a[1] );
            xp->v_hdt[2] = ( v_hdt[2] += dt * a[2] );
            xp->u_hdt = ( u_hdt += dt * u_dt );
1110
1111

            /* Move the particles with the velocitie at the half-step. */
1112
1113
1114
            p->x[0] = x[0] += dt * v_hdt[0];
            p->x[1] = x[1] += dt * v_hdt[1];
            p->x[2] = x[2] += dt * v_hdt[2];
1115
1116
1117
1118
1119
            dx = sqrtf( (x[0] - x_old[0])*(x[0] - x_old[0]) +
                        (x[1] - x_old[1])*(x[1] - x_old[1]) +
                        (x[2] - x_old[2])*(x[2] - x_old[2]) );
            dx_max = fmaxf( dx_max , dx );

1120
1121
1122
1123
1124
            /* Update positions and energies at the next full step. */
            p->v[0] = v_hdt[0] + hdt * a[0];
            p->v[1] = v_hdt[1] + hdt * a[1];
            p->v[2] = v_hdt[2] + hdt * a[2];
            w = u_dt / u_hdt * hdt;
1125
            if ( fabsf( w ) < 0.01f )
1126
                p->u = u = u_hdt * ( 1.0f + w*( 1.0f + w*( 0.5f + w*( 1.0f/6.0f + 1.0f/24.0f*w ) ) ) );
1127
            else
1128
                p->u = u = u_hdt * expf( w );
1129
1130
            w = h_dt / h * dt;
            if ( fabsf( w ) < 0.01f )
1131
                p->h = h *= ( 1.0f + w*( 1.0f + w*( 0.5f + w*( 1.0f/6.0f + 1.0f/24.0f*w ) ) ) );
1132
            else
1133
                p->h = h *= expf( w );
1134
1135
            h_max = fmaxf( h_max , h );

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
            /* Collect momentum */
            mom[0] += m * v_hdt[0];
            mom[1] += m * v_hdt[1];
            mom[2] += m * v_hdt[2];

	        /* Collect angular momentum */
	        ang[0] += m * ( x[1]*v_hdt[2] - x[2]*v_hdt[1] );
	        ang[1] += m * ( x[2]*v_hdt[0] - x[0]*v_hdt[2] );
	        ang[2] += m * ( x[0]*v_hdt[1] - x[1]*v_hdt[0] );

            /* Collect total energy. */
            ekin += 0.5 * m * ( v_hdt[0]*v_hdt[0] + v_hdt[1]*v_hdt[1] + v_hdt[2]*v_hdt[2] );
            epot += m * u_hdt;

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
            /* Init fields for density calculation. */
            p->density.wcount = 0.0f;
            p->density.wcount_dh = 0.0f;
            p->rho = 0.0f;
            p->rho_dh = 0.0f;
	        p->density.div_v = 0.0f;
            p->density.curl_v[0] = 0.0f;
            p->density.curl_v[1] = 0.0f;
            p->density.curl_v[2] = 0.0f;
                
            }
            
        }
        
    /* Otherwise, agregate data from children. */
    else {
    
        /* Init with the first non-null child. */
        dt_min = FLT_MAX;
        dt_max = 0.0f;
        h_max = 0.0f;
        dx_max = 0.0f;
        updated = 0;
        ekin = 0.0;
        epot = 0.0;
        mom[0] = 0.0f; mom[1] = 0.0f; mom[2] = 0.0f;
        ang[0] = 0.0f; ang[1] = 0.0f; ang[2] = 0.0f;
        
        /* Loop over the progeny. */
        for ( k = 0 ; k < 8 ; k++ )
            if ( c->progeny[k] != NULL ) {
                struct cell *cp = c->progeny[k];
                runner_dokick( r , cp , 0 );
                dt_min = fminf( dt_min , cp->dt_min );
                dt_max = fmaxf( dt_max , cp->dt_max );
                h_max = fmaxf( h_max , cp->h_max );
                dx_max = fmaxf( dx_max , cp->dx_max );
                updated += cp->count;
                ekin += cp->ekin;
                epot += cp->epot;
                mom[0] += cp->mom[0]; mom[1] += cp->mom[1]; mom[2] += cp->mom[2];
                ang[0] += cp->ang[0]; ang[1] += cp->ang[1]; ang[2] += cp->ang[2];
                }
    
        }

    /* Store the values. */
    c->dt_min = dt_min;
    c->dt_max = dt_max;
    c->h_max = h_max;
    c->dx_max = dx_max;
    c->updated = count;
    c->ekin = ekin;
    c->epot = epot;
    c->mom[0] = mom[0]; c->mom[1] = mom[1]; c->mom[2] = mom[2];
    c->ang[0] = ang[0]; c->ang[1] = ang[1]; c->ang[2] = ang[2];
    
    if ( timer ) {
        #ifdef TIMER_VERBOSE
1209
            message( "runner %02i: %i parts at depth %i took %.3f ms." ,
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
                r->id , c->count , c->depth ,
                ((double)TIMER_TOC(timer_kick2)) / CPU_TPS * 1000 ); fflush(stdout);
        #else
            TIMER_TOC(timer_kick2);
        #endif
        }
        
    }


Pedro Gonnet's avatar
Pedro Gonnet committed
1220
1221
1222
1223
1224
1225
1226
1227
/**
 * @brief The #runner main thread routine.
 *
 * @param data A pointer to this thread's data.
 */
 
void *runner_main ( void *data ) {

Pedro Gonnet's avatar
Pedro Gonnet committed
1228
1229
    struct runner *r = (struct runner *)data;
    struct engine *e = r->e;
1230
    struct scheduler *sched = &e->sched;
1231
    struct task *t = NULL;
1232
    struct cell *ci, *cj, *super;
1233
1234
    struct part *parts;
    int k, nr_parts;
Pedro Gonnet's avatar
Pedro Gonnet committed
1235
1236
1237
1238
1239