hydro.h 12.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
#ifndef SWIFT_PRESSURE_ENTROPY_HYDRO_H
#define SWIFT_PRESSURE_ENTROPY_HYDRO_H

/**
23
24
25
 * @file PressureEntropy/hydro.h
 * @brief Pressure-Entropy implementation of SPH (Non-neighbour loop
 * equations)
26
27
28
29
30
31
32
33
 *
 * The thermal variable is the entropy (S) and the entropy is smoothed over
 * contact discontinuities to prevent spurious surface tension.
 *
 * Follows Hopkins, P., MNRAS, 2013, Volume 428, Issue 4, pp. 2840-2856
 */

#include "adiabatic_index.h"
34
#include "approx_math.h"
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "dimension.h"
#include "equation_of_state.h"
#include "hydro_properties.h"
#include "kernel_hydro.h"

/**
 * @brief Returns the internal energy of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_internal_energy(
    const struct part *restrict p, float dt) {

  const float entropy = p->entropy + p->entropy_dt * dt;

  return gas_internal_energy_from_entropy(p->rho, entropy);
}

/**
 * @brief Returns the pressure of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_pressure(
    const struct part *restrict p, float dt) {

  const float entropy = p->entropy + p->entropy_dt * dt;

  return gas_pressure_from_entropy(p->rho, entropy);
}

/**
 * @brief Returns the entropy of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_entropy(
    const struct part *restrict p, float dt) {

  return p->entropy + p->entropy_dt * dt;
}

/**
 * @brief Returns the sound speed of a particle
 *
 * @param p The particle of interest
 * @param dt Time since the last kick
 */
__attribute__((always_inline)) INLINE static float hydro_get_soundspeed(
    const struct part *restrict p, float dt) {

  return p->force.soundspeed;
}

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/**
 * @brief Returns the density of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_density(
    const struct part *restrict p) {

  return p->rho;
}

/**
 * @brief Returns the mass of a particle
 *
 * @param p The particle of interest
 */
__attribute__((always_inline)) INLINE static float hydro_get_mass(
    const struct part *restrict p) {

  return p->mass;
}

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/**
 * @brief Modifies the thermal state of a particle to the imposed internal
 * energy
 *
 * This overrides the current state of the particle but does *not* change its
 * time-derivatives
 *
 * @param p The particle
 * @param u The new internal energy
 */
__attribute__((always_inline)) INLINE static void hydro_set_internal_energy(
    struct part *restrict p, float u) {

  p->entropy = gas_entropy_from_internal_energy(p->rho, u);
}

/**
 * @brief Modifies the thermal state of a particle to the imposed entropy
 *
 * This overrides the current state of the particle but does *not* change its
 * time-derivatives
 *
 * @param p The particle
 * @param S The new entropy
 */
__attribute__((always_inline)) INLINE static void hydro_set_entropy(
    struct part *restrict p, float S) {

  p->entropy = S;
}

/**
 * @brief Computes the hydro time-step of a given particle
 *
 * @param p Pointer to the particle data
 * @param xp Pointer to the extended particle data
 *
 */
__attribute__((always_inline)) INLINE static float hydro_compute_timestep(
    const struct part *restrict p, const struct xpart *restrict xp,
    const struct hydro_props *restrict hydro_properties) {

  const float CFL_condition = hydro_properties->CFL_condition;

  /* CFL condition */
  const float dt_cfl =
      2.f * kernel_gamma * CFL_condition * p->h / p->force.v_sig;

  return dt_cfl;
}

/**
 * @brief Initialises the particles for the first time
 *
 * This function is called only once just after the ICs have been
 * read in to do some conversions.
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_first_init_part(
    struct part *restrict p, struct xpart *restrict xp) {

  p->ti_begin = 0;
  p->ti_end = 0;
  xp->v_full[0] = p->v[0];
  xp->v_full[1] = p->v[1];
  xp->v_full[2] = p->v[2];
}

/**
 * @brief Prepares a particle for the density calculation.
 *
 * Zeroes all the relevant arrays in preparation for the sums taking place in
 * the variaous density tasks
 *
 * @param p The particle to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_init_part(
    struct part *restrict p) {
  p->density.wcount = 0.f;
  p->density.wcount_dh = 0.f;
  p->rho = 0.f;
197
198
199
200
201
202
203
  p->weightedPressure = 0.f;
  p->density.weightedPressure_dh = 0.f;
  // p->rho_dh = 0.f;
  /* p->density.div_v = 0.f; */
  /* p->density.rot_v[0] = 0.f; */
  /* p->density.rot_v[1] = 0.f; */
  /* p->density.rot_v[2] = 0.f; */
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
}

/**
 * @brief Finishes the density calculation.
 *
 * Multiplies the density and number of neighbours by the appropiate constants
 * and add the self-contribution term.
 *
 * @param p The particle to act upon
 * @param ti_current The current time (on the integer timeline)
 */
__attribute__((always_inline)) INLINE static void hydro_end_density(
    struct part *restrict p, int ti_current) {

  /* Some smoothing length multiples. */
  const float h = p->h;
220
221
222
  const float h_inv = 1.0f / h;                 /* 1/h */
  const float h_inv_dim = pow_dimension(h_inv); /* 1/h^d */
  // const float h_inv_dim_plus_one = h_inv_dim * h_inv; /* 1/h^(d+1) */
223
224
225
226

  /* Final operation on the density (add self-contribution). */
  p->rho += p->mass * kernel_root;
  p->density.wcount += kernel_root;
227
228
229
230
  // p->density.wcount_dh -= hydro_dimension * kernel_root;
  p->weightedPressure += p->mass * pow_one_over_gamma(p->entropy) * kernel_root;
  p->density.weightedPressure_dh -=
      hydro_dimension * p->mass * pow_one_over_gamma(p->entropy) * kernel_root;
231
232
233
234
235

  /* Finish the calculation by inserting the missing h-factors */
  p->rho *= h_inv_dim;
  p->density.wcount *= kernel_norm;
  p->density.wcount_dh *= h_inv * kernel_gamma * kernel_norm;
236
237
  p->weightedPressure *= h_inv_dim;
  p->density.weightedPressure_dh *= h_inv * kernel_gamma * kernel_norm;
238

239
240
241
242
  /* Final operation on the weighted pressure */
  p->weightedPressure = pow_gamma(p->weightedPressure);

  /* const float irho = 1.f / p->rho; */
243
244

  /* Compute the derivative term */
245
  // p->rho_dh = 1.f / (1.f + hydro_dimension_inv * p->h * p->rho_dh * irho);
246
247

  /* Finish calculation of the velocity curl components */
248
249
250
  // p->density.rot_v[0] *= h_inv_dim_plus_one * irho;
  // p->density.rot_v[1] *= h_inv_dim_plus_one * irho;
  // p->density.rot_v[2] *= h_inv_dim_plus_one * irho;
251
252

  /* Finish calculation of the velocity divergence */
253
  // p->density.div_v *= h_inv_dim_plus_one * irho;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
}

/**
 * @brief Prepare a particle for the force calculation.
 *
 * Computes viscosity term, conduction term and smoothing length gradient terms.
 *
 * @param p The particle to act upon
 * @param xp The extended particle data to act upon
 * @param ti_current The current time (on the timeline)
 * @param timeBase The minimal time-step size
 */
__attribute__((always_inline)) INLINE static void hydro_prepare_force(
    struct part *restrict p, struct xpart *restrict xp, int ti_current,
    double timeBase) {

  /* Compute the pressure */
  const float half_dt = (ti_current - (p->ti_begin + p->ti_end) / 2) * timeBase;

273
274
  /* Compute the sound speed from the actual pressure*/
  const float pressure = hydro_get_pressure(p, half_dt);
275
276
277
  const float irho = 1.f / p->rho;
  const float soundspeed = sqrtf(hydro_gamma * pressure * irho);

278
279
280
281
282
283
284
285
  /* Compute the "i" part of the f_ij term */
  const float number_density = p->density.wcount / kernel_norm;
  const float factor = p->h / (hydro_dimension * number_density);
  const float f_ij =
      factor * p->density.weightedPressure_dh / (1.f + factor * number_density);

  /* Comput the pressure term */
  const float pressure_term = pow_one_minus_two_over_gamma(p->weightedPressure);
286
287
288

  /* Update variables. */
  p->force.soundspeed = soundspeed;
289
290
  p->force.f_ij = f_ij;
  p->force.pressure_term = pressure_term;
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
}

/**
 * @brief Reset acceleration fields of a particle
 *
 * Resets all hydro acceleration and time derivative fields in preparation
 * for the sums taking place in the variaous force tasks
 *
 * @param p The particle to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_reset_acceleration(
    struct part *restrict p) {

  /* Reset the acceleration. */
  p->a_hydro[0] = 0.0f;
  p->a_hydro[1] = 0.0f;
  p->a_hydro[2] = 0.0f;

  /* Reset the time derivatives. */
  p->entropy_dt = 0.0f;
  p->force.h_dt = 0.0f;

  /* Reset maximal signal velocity */
  p->force.v_sig = 0.0f;
}

/**
 * @brief Predict additional particle fields forward in time when drifting
 *
 * @param p The particle
 * @param xp The extended data of the particle
 * @param t0 The time at the start of the drift
 * @param t1 The time at the end of the drift
 * @param timeBase The minimal time-step size
 */
__attribute__((always_inline)) INLINE static void hydro_predict_extra(
327
328
    struct part *restrict p, const struct xpart *restrict xp, float dt, int t0,
    int t1, double timeBase) {
329
330
331
332
333
334
335
336
337
338

  /* Drift the pressure */
  const float dt_entr = (t1 - (p->ti_begin + p->ti_end) / 2) * timeBase;
  const float pressure = hydro_get_pressure(p, dt_entr);

  const float irho = 1.f / p->rho;

  /* Compute the new sound speed */
  const float soundspeed = sqrtf(hydro_gamma * pressure * irho);

339
340
341
342
343
344
345
346
  const float w1 = -hydro_dimension * p->force.h_dt * dt_entr / p->h;
  if (fabsf(w1) < 0.2f)
    p->weightedPressure *= approx_expf(w1); /* 4th order expansion of exp(w) */
  else
    p->weightedPressure *= expf(w1);

  const float pressure_term = pow_one_minus_two_over_gamma(p->weightedPressure);

347
348
  /* Update variables */
  p->force.soundspeed = soundspeed;
349
  p->force.pressure_term = pressure_term;
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
}

/**
 * @brief Finishes the force calculation.
 *
 * Multiplies the forces and accelerationsby the appropiate constants
 *
 * @param p The particle to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_end_force(
    struct part *restrict p) {

  p->force.h_dt *= p->h * hydro_dimension_inv;

  p->entropy_dt *=
      0.5f * hydro_gamma_minus_one * pow_minus_gamma_minus_one(p->rho);
}

/**
 * @brief Kick the additional variables
 *
 * @param p The particle to act upon
 * @param xp The particle extended data to act upon
 * @param dt The time-step for this kick
 * @param half_dt The half time-step for this kick
 */
__attribute__((always_inline)) INLINE static void hydro_kick_extra(
    struct part *restrict p, struct xpart *restrict xp, float dt,
    float half_dt) {

  /* Do not decrease the entropy (temperature) by more than a factor of 2*/
  const float entropy_change = p->entropy_dt * dt;
  if (entropy_change > -0.5f * p->entropy)
    p->entropy += entropy_change;
  else
    p->entropy *= 0.5f;

  /* Do not 'overcool' when timestep increases */
  if (p->entropy + p->entropy_dt * half_dt < 0.5f * p->entropy)
    p->entropy_dt = -0.5f * p->entropy / half_dt;
}

/**
 *  @brief Converts hydro quantity of a particle at the start of a run
 *
 * Requires the density to be known
 *
 * @param p The particle to act upon
 */
__attribute__((always_inline)) INLINE static void hydro_convert_quantities(
    struct part *restrict p) {

  /* We read u in the entropy field. We now get S from u */
  p->entropy = gas_entropy_from_internal_energy(p->rho, p->entropy);
}

#endif /* SWIFT_PRESSURE_ENTROPY_HYDRO_H */