cell.c 23.2 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "atomic.h"
51
#include "error.h"
52
#include "gravity.h"
53
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
54
#include "hydro_properties.h"
55
56
#include "space.h"
#include "timers.h"
57

58
59
60
/* Global variables. */
int cell_next_tag = 0;

61
62
63
64
65
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
66
int cell_getsize(struct cell *c) {
67

Pedro Gonnet's avatar
Pedro Gonnet committed
68
69
  /* Number of cells in this subtree. */
  int count = 1;
70

71
72
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
73
    for (int k = 0; k < 8; k++)
74
75
76
77
78
79
80
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

/**
81
82
83
84
85
86
87
88
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
89
90
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

91
92
#ifdef WITH_MPI

93
94
  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
95
96
  c->ti_end_min = pc->ti_end_min;
  c->ti_end_max = pc->ti_end_max;
97
  c->count = pc->count;
98
  c->gcount = pc->gcount;
99
  c->tag = pc->tag;
Matthieu Schaller's avatar
Matthieu Schaller committed
100

101
102
  /* Number of new cells created. */
  int count = 1;
103
104

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
105
  for (int k = 0; k < 8; k++)
106
    if (pc->progeny[k] >= 0) {
Pedro Gonnet's avatar
Pedro Gonnet committed
107
      struct cell *temp = space_getcell(s);
108
      temp->count = 0;
109
      temp->gcount = 0;
110
111
112
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
113
114
115
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
116
      temp->dmin = c->dmin / 2;
117
118
119
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
120
121
      temp->depth = c->depth + 1;
      temp->split = 0;
122
      temp->dx_max = 0.f;
123
124
125
126
127
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
128
129
    }

130
  /* Return the total number of unpacked cells. */
131
  c->pcell_size = count;
132
  return count;
133
134
135
136
137

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
138
}
139

140
/**
141
 * @brief Link the cells recursively to the given #part array.
142
143
144
145
146
147
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
148
int cell_link_parts(struct cell *c, struct part *parts) {
149

150
151
152
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
153
154
155
156
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
157
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
158
159
    }
  }
160

161
  /* Return the total number of linked particles. */
162
163
  return c->count;
}
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

190
191
192
193
194
195
196
197
198
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
199
200
int cell_pack(struct cell *c, struct pcell *pc) {

201
202
#ifdef WITH_MPI

203
204
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
205
206
  pc->ti_end_min = c->ti_end_min;
  pc->ti_end_max = c->ti_end_max;
207
  pc->count = c->count;
208
  pc->gcount = c->gcount;
209
210
211
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
212
213
  int count = 1;
  for (int k = 0; k < 8; k++)
214
215
216
217
218
219
220
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
221
222
  c->pcell_size = count;
  return count;
223
224
225
226
227

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
228
229
}

230
231
232
233
234
235
236
237
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param ti_ends (output) The time information we pack into
 *
 * @return The number of packed cells.
 */
238
239
int cell_pack_ti_ends(struct cell *c, int *ti_ends) {

240
241
#ifdef WITH_MPI

242
243
  /* Pack this cell's data. */
  ti_ends[0] = c->ti_end_min;
244

245
246
247
248
249
250
251
252
253
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
  return count;
254
255
256
257
258

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
259
260
}

261
262
263
264
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
265
 * @param ti_ends The time information to unpack
266
267
268
 *
 * @return The number of cells created.
 */
269
270
int cell_unpack_ti_ends(struct cell *c, int *ti_ends) {

271
272
#ifdef WITH_MPI

273
274
  /* Unpack this cell's data. */
  c->ti_end_min = ti_ends[0];
275

276
277
278
279
280
281
282
283
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_ti_ends(c->progeny[k], &ti_ends[count]);
    }

  /* Return the number of packed values. */
284
  return count;
285
286
287
288
289

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
290
}
291

292
/**
293
 * @brief Lock a cell for access to its array of #part and hold its parents.
294
295
 *
 * @param c The #cell.
296
 * @return 0 on success, 1 on failure
297
 */
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
320
  struct cell *finger;
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
343
344
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
345
      atomic_dec(&finger2->hold);
346
347
348
349
350
351
352
353
354
355

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

356
357
358
359
360
361
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
384
  struct cell *finger;
385
386
387
388
389
390
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
391
    atomic_inc(&finger->ghold);
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
407
408
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
409
      atomic_dec(&finger2->ghold);
410
411
412
413
414
415
416
417
418

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
419

420
/**
421
 * @brief Unlock a cell's parents for access to #part array.
422
423
424
 *
 * @param c The #cell.
 */
425
426
427
428
429
430
431
432
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
433
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
434
    atomic_dec(&finger->hold);
435
436
437
438

  TIMER_TOC(timer_locktree);
}

439
440
441
442
443
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
444
445
446
447
448
449
450
451
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
452
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
453
    atomic_dec(&finger->ghold);
454
455
456
457

  TIMER_TOC(timer_locktree);
}

458
459
460
461
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
462
463
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
464
 */
465
void cell_split(struct cell *c, ptrdiff_t parts_offset) {
466

Pedro Gonnet's avatar
Pedro Gonnet committed
467
468
  int i, j;
  const int count = c->count, gcount = c->gcount;
469
470
471
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
472
473
474
475
  int left[8], right[8];
  double pivot[3];

  /* Init the pivots. */
476
  for (int k = 0; k < 3; k++) pivot[k] = c->loc[k] + c->width[k] / 2;
477
478
479
480
481
482
483
484

  /* Split along the x-axis. */
  i = 0;
  j = count - 1;
  while (i <= j) {
    while (i <= count - 1 && parts[i].x[0] <= pivot[0]) i += 1;
    while (j >= 0 && parts[j].x[0] > pivot[0]) j -= 1;
    if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
485
      struct part temp = parts[i];
486
487
      parts[i] = parts[j];
      parts[j] = temp;
Pedro Gonnet's avatar
Pedro Gonnet committed
488
      struct xpart xtemp = xparts[i];
489
490
491
492
      xparts[i] = xparts[j];
      xparts[j] = xtemp;
    }
  }
493
494
495
496
497
498
499
500

#ifdef SWIFT_DEBUG_CHECKS
  for (int k = 0; k <= j; k++)
    if (parts[k].x[0] > pivot[0]) error("cell_split: sorting failed.");
  for (int k = i; k < count; k++)
    if (parts[k].x[0] < pivot[0]) error("cell_split: sorting failed.");
#endif

501
502
503
504
505
506
  left[1] = i;
  right[1] = count - 1;
  left[0] = 0;
  right[0] = j;

  /* Split along the y axis, twice. */
Pedro Gonnet's avatar
Pedro Gonnet committed
507
  for (int k = 1; k >= 0; k--) {
508
509
510
511
512
513
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && parts[i].x[1] <= pivot[1]) i += 1;
      while (j >= left[k] && parts[j].x[1] > pivot[1]) j -= 1;
      if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
514
        struct part temp = parts[i];
515
516
        parts[i] = parts[j];
        parts[j] = temp;
Pedro Gonnet's avatar
Pedro Gonnet committed
517
        struct xpart xtemp = xparts[i];
518
519
520
521
        xparts[i] = xparts[j];
        xparts[j] = xtemp;
      }
    }
522
523
524
525
526
527
528
529
530
531
532

#ifdef SWIFT_DEBUG_CHECKS
    for (int kk = left[k]; kk <= j; kk++)
      if (parts[kk].x[1] > pivot[1]) {
        message("ival=[%i,%i], i=%i, j=%i.", left[k], right[k], i, j);
        error("sorting failed (left).");
      }
    for (int kk = i; kk <= right[k]; kk++)
      if (parts[kk].x[1] < pivot[1]) error("sorting failed (right).");
#endif

533
534
535
536
537
538
539
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Split along the z axis, four times. */
Pedro Gonnet's avatar
Pedro Gonnet committed
540
  for (int k = 3; k >= 0; k--) {
541
542
543
544
545
546
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && parts[i].x[2] <= pivot[2]) i += 1;
      while (j >= left[k] && parts[j].x[2] > pivot[2]) j -= 1;
      if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
547
        struct part temp = parts[i];
548
549
        parts[i] = parts[j];
        parts[j] = temp;
Pedro Gonnet's avatar
Pedro Gonnet committed
550
        struct xpart xtemp = xparts[i];
551
552
553
554
        xparts[i] = xparts[j];
        xparts[j] = xtemp;
      }
    }
555
556
557
558
559
560
561
562
563
564
565
566
567
568

#ifdef SWIFT_DEBUG_CHECKS
    for (int kk = left[k]; kk <= j; kk++)
      if (parts[kk].x[2] > pivot[2]) {
        message("ival=[%i,%i], i=%i, j=%i.", left[k], right[k], i, j);
        error("sorting failed (left).");
      }
    for (int kk = i; kk <= right[k]; kk++)
      if (parts[kk].x[2] < pivot[2]) {
        message("ival=[%i,%i], i=%i, j=%i.", left[k], right[k], i, j);
        error("sorting failed (right).");
      }
#endif

569
570
571
572
573
574
575
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
576
  for (int k = 0; k < 8; k++) {
577
578
579
580
581
582
    c->progeny[k]->count = right[k] - left[k] + 1;
    c->progeny[k]->parts = &c->parts[left[k]];
    c->progeny[k]->xparts = &c->xparts[left[k]];
  }

  /* Re-link the gparts. */
583
  if (count > 0 && gcount > 0) part_relink_gparts(parts, count, parts_offset);
584

585
#ifdef SWIFT_DEBUG_CHECKS
586
  /* Verify that _all_ the parts have been assigned to a cell. */
587
588
589
590
591
592
593
594
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
595
596

  /* Verify a few sub-cells. */
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
  for (int k = 0; k < c->progeny[0]->count; k++)
    if (c->progeny[0]->parts[k].x[0] > pivot[0] ||
        c->progeny[0]->parts[k].x[1] > pivot[1] ||
        c->progeny[0]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
    if (c->progeny[1]->parts[k].x[0] > pivot[0] ||
        c->progeny[1]->parts[k].x[1] > pivot[1] ||
        c->progeny[1]->parts[k].x[2] <= pivot[2])
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
    if (c->progeny[2]->parts[k].x[0] > pivot[0] ||
        c->progeny[2]->parts[k].x[1] <= pivot[1] ||
        c->progeny[2]->parts[k].x[2] > pivot[2])
      error("Sorting failed (progeny=2).");
#endif
613
614
615
616
617
618
619
620
621
622

  /* Now do the same song and dance for the gparts. */

  /* Split along the x-axis. */
  i = 0;
  j = gcount - 1;
  while (i <= j) {
    while (i <= gcount - 1 && gparts[i].x[0] <= pivot[0]) i += 1;
    while (j >= 0 && gparts[j].x[0] > pivot[0]) j -= 1;
    if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
623
      struct gpart gtemp = gparts[i];
624
625
      gparts[i] = gparts[j];
      gparts[j] = gtemp;
626
    }
627
628
629
630
631
632
633
  }
  left[1] = i;
  right[1] = gcount - 1;
  left[0] = 0;
  right[0] = j;

  /* Split along the y axis, twice. */
Pedro Gonnet's avatar
Pedro Gonnet committed
634
  for (int k = 1; k >= 0; k--) {
635
636
637
638
639
640
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && gparts[i].x[1] <= pivot[1]) i += 1;
      while (j >= left[k] && gparts[j].x[1] > pivot[1]) j -= 1;
      if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
641
        struct gpart gtemp = gparts[i];
642
643
644
645
646
647
648
649
650
651
652
        gparts[i] = gparts[j];
        gparts[j] = gtemp;
      }
    }
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Split along the z axis, four times. */
Pedro Gonnet's avatar
Pedro Gonnet committed
653
  for (int k = 3; k >= 0; k--) {
654
655
656
657
658
659
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && gparts[i].x[2] <= pivot[2]) i += 1;
      while (j >= left[k] && gparts[j].x[2] > pivot[2]) j -= 1;
      if (i < j) {
Pedro Gonnet's avatar
Pedro Gonnet committed
660
        struct gpart gtemp = gparts[i];
661
662
663
664
665
666
667
668
669
670
671
        gparts[i] = gparts[j];
        gparts[j] = gtemp;
      }
    }
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
672
  for (int k = 0; k < 8; k++) {
673
674
675
676
677
    c->progeny[k]->gcount = right[k] - left[k] + 1;
    c->progeny[k]->gparts = &c->gparts[left[k]];
  }

  /* Re-link the parts. */
678
679
  if (count > 0 && gcount > 0)
    part_relink_parts(gparts, gcount, parts - parts_offset);
680
}
681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
 * We compute the mean and standard deviation of the smoothing lengths in
 * logarithmic space and limit values to mean + 4 sigma.
 *
 * @param c The cell.
 */
void cell_sanitize(struct cell *c) {

  const int count = c->count;
  struct part *parts = c->parts;

  /* First collect some statistics */
  float h_mean = 0.f, h_mean2 = 0.f;
  float h_min = FLT_MAX, h_max = 0.f;
  for (int i = 0; i < count; ++i) {

701
    const float h = logf(parts[i].h);
702
703
704
705
706
707
708
709
    h_mean += h;
    h_mean2 += h * h;
    h_max = max(h_max, h);
    h_min = min(h_min, h);
  }
  h_mean /= count;
  h_mean2 /= count;
  const float h_var = h_mean2 - h_mean * h_mean;
710
  const float h_std = (h_var > 0.f) ? sqrtf(h_var) : 0.1f * h_mean;
711
712

  /* Choose a cut */
713
  const float h_limit = expf(h_mean + 4.f * h_std);
714
715

  /* Be verbose this is not innocuous */
716
717
  message("Cell properties: h_min= %f h_max= %f geometric mean= %f.",
          expf(h_min), expf(h_max), expf(h_mean));
718
719
720

  if (c->h_max > h_limit) {

721
    message("Smoothing lengths will be limited to (mean + 4sigma)= %f.",
722
723
724
725
726
727
            h_limit);

    /* Apply the cut */
    for (int i = 0; i < count; ++i) parts->h = min(parts[i].h, h_limit);

    c->h_max = h_limit;
728
729
730
731

  } else {

    message("Smoothing lengths will not be limited.");
732
733
734
  }
}

735
/**
736
 * @brief Converts hydro quantities to a valid state after the initial density
737
 * calculation
738
739
740
741
742
743
744
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_convert_hydro(struct cell *c, void *data) {

  struct part *p = c->parts;
745
746

  for (int i = 0; i < c->count; ++i) {
747
748
749
750
    hydro_convert_quantities(&p[i]);
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
751
752
753
754
755
756
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
757
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
758
759
  c->density = NULL;
  c->nr_density = 0;
760

761
762
763
  c->gradient = NULL;
  c->nr_gradient = 0;

Matthieu Schaller's avatar
Matthieu Schaller committed
764
765
766
  c->force = NULL;
  c->nr_force = 0;
}
767

768
769
770
771
772
773
774
775
776
777
778
779
/**
 * @brief Checks whether the cells are direct neighbours ot not. Both cells have
 * to be of the same size
 *
 * @param ci First #cell.
 * @param cj Second #cell.
 *
 * @todo Deal with periodicity.
 */
int cell_are_neighbours(const struct cell *restrict ci,
                        const struct cell *restrict cj) {

Matthieu Schaller's avatar
Matthieu Schaller committed
780
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
781
  if (ci->width[0] != cj->width[0]) error("Cells of different size !");
782
783
784
#endif

  /* Maximum allowed distance */
785
786
  const double min_dist =
      1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
787
788
789
790
791
792
793
794
795
796
797

  /* (Manhattan) Distance between the cells */
  for (int k = 0; k < 3; k++) {
    const double center_i = ci->loc[k];
    const double center_j = cj->loc[k];
    if (fabsf(center_i - center_j) > min_dist) return 0;
  }

  return 1;
}

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/**
 * @brief Computes the multi-pole brutally and compare to the
 * recursively computed one.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_check_multipole(struct cell *c, void *data) {

  struct multipole ma;

  if (c->gcount > 0) {

    /* Brute-force calculation */
    multipole_init(&ma, c->gparts, c->gcount);

    /* Compare with recursive one */
    struct multipole mb = c->multipole;

    if (fabsf(ma.mass - mb.mass) / fabsf(ma.mass + mb.mass) > 1e-5)
      error("Multipole masses are different (%12.15e vs. %12.15e)", ma.mass,
            mb.mass);

    for (int k = 0; k < 3; ++k)
      if (fabsf(ma.CoM[k] - mb.CoM[k]) / fabsf(ma.CoM[k] + mb.CoM[k]) > 1e-5)
        error("Multipole CoM are different (%12.15e vs. %12.15e", ma.CoM[k],
              mb.CoM[k]);

    if (fabsf(ma.I_xx - mb.I_xx) / fabsf(ma.I_xx + mb.I_xx) > 1e-5 &&
        ma.I_xx > 1e-9)
      error("Multipole I_xx are different (%12.15e vs. %12.15e)", ma.I_xx,
            mb.I_xx);
    if (fabsf(ma.I_yy - mb.I_yy) / fabsf(ma.I_yy + mb.I_yy) > 1e-5 &&
        ma.I_yy > 1e-9)
      error("Multipole I_yy are different (%12.15e vs. %12.15e)", ma.I_yy,
            mb.I_yy);
    if (fabsf(ma.I_zz - mb.I_zz) / fabsf(ma.I_zz + mb.I_zz) > 1e-5 &&
        ma.I_zz > 1e-9)
      error("Multipole I_zz are different (%12.15e vs. %12.15e)", ma.I_zz,
            mb.I_zz);
    if (fabsf(ma.I_xy - mb.I_xy) / fabsf(ma.I_xy + mb.I_xy) > 1e-5 &&
        ma.I_xy > 1e-9)
      error("Multipole I_xy are different (%12.15e vs. %12.15e)", ma.I_xy,
            mb.I_xy);
    if (fabsf(ma.I_xz - mb.I_xz) / fabsf(ma.I_xz + mb.I_xz) > 1e-5 &&
        ma.I_xz > 1e-9)
      error("Multipole I_xz are different (%12.15e vs. %12.15e)", ma.I_xz,
            mb.I_xz);
    if (fabsf(ma.I_yz - mb.I_yz) / fabsf(ma.I_yz + mb.I_yz) > 1e-5 &&
        ma.I_yz > 1e-9)
      error("Multipole I_yz are different (%12.15e vs. %12.15e)", ma.I_yz,
            mb.I_yz);
  }
851
852
}

853
/**
854
 * @brief Frees up the memory allocated for this #cell.
855
 *
856
 * @param c The #cell.
857
 */
858
859
860
861
862
863
864
void cell_clean(struct cell *c) {

  free(c->sort);

  /* Recurse */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k]) cell_clean(c->progeny[k]);
865
}
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

/**
 * @brief Checks whether a given cell needs drifting or not.
 *
 * @param c the #cell.
 * @param ti_current The current time on the integer time-line.
 *
 * @return 1 If the cell needs drifting, 0 otherwise.
 */
int cell_is_drift_needed(struct cell *c, int ti_current) {

  /* Do we have at least one active particle in the cell ?*/
  if (c->ti_end_min == ti_current) return 1;

  /* Loop over the pair tasks that involve this cell */
  for (struct link *l = c->density; l != NULL; l = l->next) {

    if (l->t->type != task_type_pair && l->t->type != task_type_sub_pair)
      continue;

886
    /* Does the other cell in the pair have an active particle ? */
Matthieu Schaller's avatar
Matthieu Schaller committed
887
888
    if ((l->t->ci == c && l->t->cj->ti_end_min == ti_current) ||
        (l->t->cj == c && l->t->ci->ti_end_min == ti_current))
889
      return 1;
890
891
892
893
894
  }

  /* No neighbouring cell has active particles. Drift not necessary */
  return 0;
}