cooling_rates.h 28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2020 Matthieu Schaller (schaller@strw.leidenuniv.nl)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/
#ifndef SWIFT_QLA_COOLING_RATES_H
#define SWIFT_QLA_COOLING_RATES_H

22
/* Config parameters. */
23
24
25
#include "../config.h"

/* Local includes. */
26
#include "chemistry_struct.h"
27
#include "cooling_tables.h"
28
#include "error.h"
29
30
31
32
33
34
35
36
37
#include "exp10.h"
#include "interpolate.h"

/**
 * @brief Compute ratio of mass fraction to solar mass fraction
 * for each element carried by a given particle.
 *
 * The solar abundances are taken from the tables themselves.
 *
38
39
40
41
42
43
44
45
 * The COLIBRE chemistry model does not track S and Ca. We assume
 * that their abundance with respect to solar is the same as
 * the ratio for Si.
 *
 * The other un-tracked elements are scaled with the total metallicity.
 *
 * We optionally apply a correction if the user asked for a different
 * ratio.
46
47
 *
 * We also re-order the elements such that they match the order of the
48
 * tables. This is [H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe, OA].
49
 *
50
51
52
53
54
55
 * The solar abundances table (from the cooling struct) is arranged as
 * [H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe].
 *
 * @param p Pointer to #part struct.
 * @param cooling #cooling_function_data struct.
 * @param ratio_solar (return) Array of ratios to solar abundances.
56
57
58
 *
 * @return The log10 of the total metallicity with respect to solar, i.e.
 * log10(Z / Z_sun).
59
 */
60
__attribute__((always_inline)) INLINE static float abundance_ratio_to_solar(
61
62
    const struct part *p, const struct cooling_function_data *cooling,
    const struct phys_const *phys_const,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    float ratio_solar[qla_cooling_N_elementtypes]) {

  /* Convert mass fractions to abundances (nx/nH) and compute metal mass */
  float totmass = 0., metalmass = 0.;
  for (enum qla_cooling_element elem = element_H; elem < element_OA; elem++) {

    double Z_mass_frac = -1.f;
    double Z_mass_frac_H = 1. - phys_const->const_primordial_He_fraction;

    /* Assume primordial abundances */
    if (elem == element_H) {
      Z_mass_frac = 1. - phys_const->const_primordial_He_fraction;
    } else if (elem == element_He) {
      Z_mass_frac = phys_const->const_primordial_He_fraction;
    } else {
      Z_mass_frac = 0.f;
    }

    const int indx1d =
        row_major_index_2d(cooling->indxZsol, elem, qla_cooling_N_metallicity,
                           qla_cooling_N_elementtypes);

    const float Mfrac = Z_mass_frac;

    /* ratio_X = ((M_x/M) / (M_H/M)) * (m_H / m_X) * (1 / Z_sun_X) */
    ratio_solar[elem] =
        (Mfrac / Z_mass_frac_H) * cooling->atomicmass[element_H] *
        cooling->atomicmass_inv[elem] * cooling->Abundances_inv[indx1d];

    totmass += Mfrac;
    if (elem > element_He) metalmass += Mfrac;
  }

  /* Compute metallicity (Z / Z_sun) of the elements we explicitly track. */
  /* float ZZsol = (metalmass / totmass) * cooling->Zsol_inv[0];
  if (ZZsol <= 0.0f) ZZsol = FLT_MIN;
  const float logZZsol = log10f(ZZsol); */

  /* Get total metallicity [Z/Z_sun] from the particle data */
  const float Z_total =
      (float)chemistry_get_total_metal_mass_fraction_for_cooling(p);
  float ZZsol = Z_total * cooling->Zsol_inv[0];
  if (ZZsol <= 0.0f) ZZsol = FLT_MIN;
  const float logZZsol = log10f(ZZsol);

  /* All other elements (element_OA): scale with metallicity */
  ratio_solar[element_OA] = ZZsol;

  /* Get index and offset from the metallicity table conresponding to this
   * metallicity */
  int met_index;
  float d_met;

  get_index_1d(cooling->Metallicity, qla_cooling_N_metallicity, logZZsol,
               &met_index, &d_met);

  /* At this point ratio_solar is (nx/nH) / (nx/nH)_sol.
   * To multiply with the tables, we want the individual abundance ratio
   * relative to what is used in the tables for each metallicity
   */

  /* For example: for a metallicity of 1 per cent solar, the metallicity bin
   * for logZZsol = -2 has already the reduced cooling rates for each element;
   * it should therefore NOT be multiplied by 0.01 again.
   *
   * BUT: if e.g. Carbon is twice as abundant as the solar abundance ratio,
   * i.e. nC / nH = 0.02 * (nC/nH)_sol for the overall metallicity of 0.01,
   * the Carbon cooling rate is multiplied by 2
   *
   * We only do this if we are not in the primodial metallicity bin in which
   * case the ratio to solar should be 0.
   */

  for (int i = 0; i < qla_cooling_N_elementtypes; i++) {

    /* Are we considering a metal and are *not* in the primodial metallicity
     * bin? Or are we looking at H or He? */
    if ((met_index > 0) || (i == element_H) || (i == element_He)) {

      /* Get min/max abundances */
      const float log_nx_nH_min = cooling->LogAbundances[row_major_index_2d(
          met_index, i, qla_cooling_N_metallicity, qla_cooling_N_elementtypes)];

      const float log_nx_nH_max = cooling->LogAbundances[row_major_index_2d(
          met_index + 1, i, qla_cooling_N_metallicity,
          qla_cooling_N_elementtypes)];

      /* Get solar abundances */
      const float log_nx_nH_sol = cooling->LogAbundances[row_major_index_2d(
          cooling->indxZsol, i, qla_cooling_N_metallicity,
          qla_cooling_N_elementtypes)];

      /* Interpolate ! (linearly in log-space) */
      const float log_nx_nH =
          (log_nx_nH_min * (1.f - d_met) + log_nx_nH_max * d_met) -
          log_nx_nH_sol;

      ratio_solar[i] *= exp10f(-log_nx_nH);

    } else {

      /* Primordial bin --> Z/Z_sun is 0 for that element */
      ratio_solar[i] = 0.;
    }
  }

  /* at this point ratio_solar is (nx/nH) / (nx/nH)_table [Z],
   * the metallicity dependent abundance ratio for solar abundances.
   * We also return the total metallicity */

  return logZZsol;
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
}

/**
 * @brief Computes the extra heat from Helium reionisation at a given redshift.
 *
 * We follow the implementation of Wiersma et al. 2009, MNRAS, 399, 574-600,
 * section. 2. The calculation returns energy in CGS.
 *
 * Note that delta_z is negative.
 *
 * @param z The current redshift.
 * @param delta_z The change in redhsift over the course of this time-step.
 * @param cooling The #cooling_function_data used in the run.
 * @return Helium reionization energy in CGS units.
 */
189
190
191
__attribute__((always_inline)) INLINE static double
eagle_helium_reionization_extraheat(
    double z, double delta_z, const struct cooling_function_data *cooling) {
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

#ifdef SWIFT_DEBUG_CHECKS
  if (delta_z > 0.f) error("Invalid value for delta_z. Should be negative.");
#endif

  /* Recover the values we need */
  const double z_centre = cooling->He_reion_z_centre;
  const double z_sigma = cooling->He_reion_z_sigma;
  const double heat_cgs = cooling->He_reion_heat_cgs;

  double extra_heat = 0.;

  /* Integral of the Gaussian between z and z - delta_z */
  extra_heat += erf((z - delta_z - z_centre) / (M_SQRT2 * z_sigma));
  extra_heat -= erf((z - z_centre) / (M_SQRT2 * z_sigma));

  /* Multiply by the normalisation factor */
  extra_heat *= heat_cgs * 0.5;

  return extra_heat;
}

/**
 * @brief Computes the log_10 of the temperature corresponding to a given
216
 * internal energy, hydrogen number density, metallicity and redshift
217
218
219
220
221
 *
 * @param log_10_u_cgs Log base 10 of internal energy in cgs.
 * @param redshift Current redshift.
 * @param n_H_index Index along the Hydrogen density dimension.
 * @param d_n_H Offset between Hydrogen density and table[n_H_index].
222
223
224
225
 * @param met_index Index along the metallicity dimension.
 * @param d_met Offset between metallicity and table[met_index].
 * @param red_index Index along the redshift dimension.
 * @param d_red Offset between redshift and table[red_index].
226
227
228
 * @param cooling #cooling_function_data structure.
 *
 * @return log_10 of the temperature.
229
230
 *
 * TO DO: outside table ranges, it uses at the moment the minimum, maximu value
231
 */
232
233
234
__attribute__((always_inline)) INLINE static float qla_convert_u_to_temp(
    const double log_10_u_cgs, const float redshift, int n_H_index, float d_n_H,
    int met_index, float d_met, int red_index, float d_red,
235
236
237
238
239
    const struct cooling_function_data *cooling) {

  /* Get index of u along the internal energy axis */
  int u_index;
  float d_u;
240
241

  get_index_1d(cooling->Therm, qla_cooling_N_internalenergy, log_10_u_cgs,
242
243
244
               &u_index, &d_u);

  /* Interpolate temperature table to return temperature for current
245
   * internal energy */
246
  float log_10_T;
247
248
249
250
251
252

  /* Temperature from internal energy */
  log_10_T = interpolation_4d(
      cooling->table.T_from_U, red_index, u_index, met_index, n_H_index, d_red,
      d_u, d_met, d_n_H, qla_cooling_N_redshifts, qla_cooling_N_internalenergy,
      qla_cooling_N_metallicity, qla_cooling_N_density);
253
254
255
256
257
258
259
260
261
262
263
264
265

  /* Special case for temperatures below the start of the table */
  if (u_index == 0 && d_u == 0.f) {

    /* The temperature is multiplied by u / 10^T[0]
     * where T[0] is the first entry in the table */
    log_10_T += log_10_u_cgs - cooling->Temp[0];
  }

  return log_10_T;
}

/**
266
267
268
269
270
271
272
273
274
275
276
277
 * @brief Computes the log_10 of the internal energy corresponding to a given
 * temperature, hydrogen number density, metallicity and redshift
 *
 * @param log_10_T Log base 10 of temperature in K
 * @param redshift Current redshift.
 * @param n_H_index Index along the Hydrogen density dimension.
 * @param d_n_H Offset between Hydrogen density and table[n_H_index].
 * @param met_index Index along the metallicity dimension.
 * @param d_met Offset between metallicity and table[met_index].
 * @param red_index Index along the redshift dimension.
 * @param d_red Offset between redshift and table[red_index].
 * @param cooling #cooling_function_data structure.
278
 *
279
 * @return log_10 of the internal energy in cgs
280
 *
281
 * TO DO: outside table ranges, it uses at the moment the minimum, maximu value
282
 */
283
284
285
286
287
288
289
290
__attribute__((always_inline)) INLINE static float qla_convert_temp_to_u(
    const double log_10_T, const float redshift, int n_H_index, float d_n_H,
    int met_index, float d_met, int red_index, float d_red,
    const struct cooling_function_data *cooling) {

  /* Get index of u along the internal energy axis */
  int T_index;
  float d_T;
291

292
293
  get_index_1d(cooling->Temp, qla_cooling_N_temperature, log_10_T, &T_index,
               &d_T);
294

295
296
297
  /* Interpolate internal energy table to return internal energy for current
   * temperature */
  float log_10_U;
298

299
300
301
302
303
304
305
  /* Internal energy from temperature*/
  log_10_U = interpolation_4d(
      cooling->table.U_from_T, red_index, T_index, met_index, n_H_index, d_red,
      d_T, d_met, d_n_H, qla_cooling_N_redshifts, qla_cooling_N_temperature,
      qla_cooling_N_metallicity, qla_cooling_N_density);

  return log_10_U;
306
307
308
}

/**
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
 * @brief Computes the mean particle mass for a given
 * metallicity, temperature, redshift, and density.
 *
 * @param log_T_cgs Log base 10 of temperature in K
 * @param redshift Current redshift
 * @param n_H_cgs Hydrogen number density in cgs
 * @param ZZsol Metallicity relative to the solar value from the tables
 * @param n_H_index Index along the Hydrogen number density dimension
 * @param d_n_H Offset between Hydrogen density and table[n_H_index]
 * @param met_index Index along the metallicity dimension
 * @param d_met Offset between metallicity and table[met_index]
 * @param red_index Index along redshift dimension
 * @param d_red Offset between redshift and table[red_index]
 * @param cooling #cooling_function_data structure
 *
 * @return linear electron density in cm-3 (NOT the electron fraction)
325
 */
326
327
328
329
INLINE static float qla_meanparticlemass_temperature(
    double log_T_cgs, double redshift, double n_H_cgs, float ZZsol,
    int n_H_index, float d_n_H, int met_index, float d_met, int red_index,
    float d_red, const struct cooling_function_data *cooling) {
330

331
  /* Get index of T along the temperature axis */
332
333
  int T_index;
  float d_T;
334
335

  get_index_1d(cooling->Temp, qla_cooling_N_temperature, log_T_cgs, &T_index,
336
337
               &d_T);

338
339
340
341
  const float mu = interpolation_4d(
      cooling->table.Tmu, red_index, T_index, met_index, n_H_index, d_red, d_T,
      d_met, d_n_H, qla_cooling_N_redshifts, qla_cooling_N_temperature,
      qla_cooling_N_metallicity, qla_cooling_N_density);
342

343
344
  return mu;
}
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/**
 * @brief Computes the electron density for a given element
 * abundance ratio, internal energy, redshift, and density.
 *
 * @param log_u_cgs Log base 10 of internal energy in cgs [erg g-1]
 * @param redshift Current redshift
 * @param n_H_cgs Hydrogen number density in cgs
 * @param ZZsol Metallicity relative to the solar value from the tables
 * @param abundance_ratio Abundance ratio for each element x relative to solar
 * @param n_H_index Index along the Hydrogen number density dimension
 * @param d_n_H Offset between Hydrogen density and table[n_H_index]
 * @param met_index Index along the metallicity dimension
 * @param d_met Offset between metallicity and table[met_index]
 * @param red_index Index along redshift dimension
 * @param d_red Offset between redshift and table[red_index]
 * @param cooling #cooling_function_data structure
 *
 * @return linear electron density in cm-3 (NOT the electron fraction)
 */
INLINE static float qla_electron_density(
    double log_u_cgs, double redshift, double n_H_cgs, float ZZsol,
    const float abundance_ratio[qla_cooling_N_elementtypes], int n_H_index,
    float d_n_H, int met_index, float d_met, int red_index, float d_red,
    const struct cooling_function_data *cooling) {
370

371
372
373
  /* Get index of u along the internal energy axis */
  int U_index;
  float d_U;
374

375
376
  get_index_1d(cooling->Therm, qla_cooling_N_internalenergy, log_u_cgs,
               &U_index, &d_U);
377

378
379
380
381
382
383
384
  /* n_e / n_H */
  const float electron_fraction = interpolation4d_plus_summation(
      cooling->table.Uelectron_fraction, abundance_ratio, element_H,
      qla_cooling_N_electrontypes - 4, red_index, U_index, met_index, n_H_index,
      d_red, d_U, d_met, d_n_H, qla_cooling_N_redshifts,
      qla_cooling_N_internalenergy, qla_cooling_N_metallicity,
      qla_cooling_N_density, qla_cooling_N_electrontypes);
385

386
387
  return electron_fraction * n_H_cgs;
}
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/**
 * @brief Computes the electron density for a given element
 * abundance ratio, temperature, redshift, and density.
 *
 * @param log_T_cgs Log base 10 of temperature
 * @param redshift Current redshift
 * @param n_H_cgs Hydrogen number density in cgs
 * @param ZZsol Metallicity relative to the solar value from the tables
 * @param abundance_ratio Abundance ratio for each element x relative to solar
 * @param n_H_index Index along the Hydrogen number density dimension
 * @param d_n_H Offset between Hydrogen density and table[n_H_index]
 * @param met_index Index along the metallicity dimension
 * @param d_met Offset between metallicity and table[met_index]
 * @param red_index Index along redshift dimension
 * @param d_red Offset between redshift and table[red_index]
 * @param cooling #cooling_function_data structure
 *
 * @return linear electron density in cm-3 (NOT the electron fraction)
 */
INLINE static float qla_electron_density_temperature(
    double log_T_cgs, double redshift, double n_H_cgs, float ZZsol,
    const float abundance_ratio[qla_cooling_N_elementtypes], int n_H_index,
    float d_n_H, int met_index, float d_met, int red_index, float d_red,
    const struct cooling_function_data *cooling) {
413

414
415
416
  /* Get index of u along the internal energy axis */
  int T_index;
  float d_T;
417

418
419
  get_index_1d(cooling->Temp, qla_cooling_N_temperature, log_T_cgs, &T_index,
               &d_T);
420

421
422
423
424
425
426
427
  /* n_e / n_H */
  const float electron_fraction = interpolation4d_plus_summation(
      cooling->table.Telectron_fraction, abundance_ratio, element_H,
      qla_cooling_N_electrontypes - 4, red_index, T_index, met_index, n_H_index,
      d_red, d_T, d_met, d_n_H, qla_cooling_N_redshifts,
      qla_cooling_N_internalenergy, qla_cooling_N_metallicity,
      qla_cooling_N_density, qla_cooling_N_electrontypes);
428

429
430
  return electron_fraction * n_H_cgs;
}
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/**
 * @brief Computes the net cooling rate (cooling - heating) for a given element
 * abundance ratio, internal energy, redshift, and density. The unit of the net
 * cooling rate is Lambda / nH**2 [erg cm^3 s-1] and all input values are in
 * cgs. The Compton cooling is not taken from the tables but calculated
 * analytically and added separately
 *
 * @param log_u_cgs Log base 10 of internal energy in cgs [erg g-1]
 * @param redshift Current redshift
 * @param n_H_cgs Hydrogen number density in cgs
 * @param abundance_ratio Abundance ratio for each element x relative to solar
 * @param n_H_index Index along the Hydrogen number density dimension
 * @param d_n_H Offset between Hydrogen density and table[n_H_index]
 * @param met_index Index along the metallicity dimension
 * @param d_met Offset between metallicity and table[met_index]
 * @param red_index Index along redshift dimension
 * @param d_red Offset between redshift and table[red_index]
 * @param cooling #cooling_function_data structure
 *
 * @param onlyicool if true / 1 only plot cooling channel icool
 * @param onlyiheat if true / 1 only plot cooling channel iheat
 * @param icool cooling channel to be used
 * @param iheat heating channel to be used
 *
 * Throughout the code: onlyicool = onlyiheat = icool = iheat = 0
 * These are only used for testing.
 */
INLINE static double qla_cooling_rate(
    double log_u_cgs, double redshift, double n_H_cgs,
    const float abundance_ratio[qla_cooling_N_elementtypes], int n_H_index,
    float d_n_H, int met_index, float d_met, int red_index, float d_red,
    const struct cooling_function_data *cooling, int onlyicool, int onlyiheat,
    int icool, int iheat) {

  /* Set weights for cooling rates */
  float weights_cooling[qla_cooling_N_cooltypes - 2];
  for (int i = 0; i < qla_cooling_N_cooltypes - 2; i++) {

    if (i < qla_cooling_N_elementtypes) {
      /* Use abundance ratios */
      weights_cooling[i] = abundance_ratio[i];
    } else if (i == cooltype_Compton) {
      /* added analytically later, do not use value from table*/
      weights_cooling[i] = 0.f;
    } else {
      /* use same abundances as in the tables */
      weights_cooling[i] = 1.f;
    }
480
481
  }

482
483
484
485
486
  /* If we care only about one channel, cancel all the other ones */
  if (onlyicool != 0) {
    for (int i = 0; i < qla_cooling_N_cooltypes - 2; i++) {
      if (i != icool) weights_cooling[i] = 0.f;
    }
487
488
  }

489
490
491
492
493
494
495
496
  /* Set weights for heating rates */
  float weights_heating[qla_cooling_N_heattypes - 2];
  for (int i = 0; i < qla_cooling_N_heattypes - 2; i++) {
    if (i < qla_cooling_N_elementtypes) {
      weights_heating[i] = abundance_ratio[i];
    } else {
      weights_heating[i] = 1.f; /* use same abundances as in the tables */
    }
497
498
  }

499
500
501
502
  /* If we care only about one channel, cancel all the other ones */
  if (onlyiheat != 0) {
    for (int i = 0; i < qla_cooling_N_heattypes - 2; i++) {
      if (i != iheat) weights_heating[i] = 0.f;
503
    }
504
  }
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  /* Get index of u along the internal energy axis */
  int U_index;
  float d_U;
  get_index_1d(cooling->Therm, qla_cooling_N_internalenergy, log_u_cgs,
               &U_index, &d_U);

  /* n_e / n_H */
  const double electron_fraction = interpolation4d_plus_summation(
      cooling->table.Uelectron_fraction, abundance_ratio, /* */
      element_H, qla_cooling_N_electrontypes - 4,         /* */
      red_index, U_index, met_index, n_H_index,           /* */
      d_red, d_U, d_met, d_n_H,                           /* */
      qla_cooling_N_redshifts,                            /* */
      qla_cooling_N_internalenergy,                       /* */
      qla_cooling_N_metallicity,                          /* */
      qla_cooling_N_density,                              /* */
      qla_cooling_N_electrontypes);                       /* */

  /* Lambda / n_H**2 */
  const double cooling_rate = interpolation4d_plus_summation(
      cooling->table.Ucooling, weights_cooling, /* */
      element_H, qla_cooling_N_cooltypes - 3,   /* */
      red_index, U_index, met_index, n_H_index, /* */
      d_red, d_U, d_met, d_n_H,                 /* */
      qla_cooling_N_redshifts,                  /* */
      qla_cooling_N_internalenergy,             /* */
      qla_cooling_N_metallicity,                /* */
      qla_cooling_N_density,                    /* */
      qla_cooling_N_cooltypes);                 /* */

  /* Gamma / n_H**2 */
  const double heating_rate = interpolation4d_plus_summation(
      cooling->table.Uheating, weights_heating, /* */
      element_H, qla_cooling_N_heattypes - 3,   /* */
      red_index, U_index, met_index, n_H_index, /* */
      d_red, d_U, d_met, d_n_H,                 /* */
      qla_cooling_N_redshifts,                  /* */
      qla_cooling_N_internalenergy,             /* */
      qla_cooling_N_metallicity,                /* */
      qla_cooling_N_density,                    /* */
      qla_cooling_N_heattypes);                 /* */

  /* Temperature from internal energy */
  const double logtemp =
      interpolation_4d(cooling->table.T_from_U,                  /* */
                       red_index, U_index, met_index, n_H_index, /* */
                       d_red, d_U, d_met, d_n_H,                 /* */
                       qla_cooling_N_redshifts,                  /* */
                       qla_cooling_N_internalenergy,             /* */
                       qla_cooling_N_metallicity,                /* */
                       qla_cooling_N_density);                   /* */
                                                                 /* */
  const double temp = exp10(logtemp);

  /* Compton cooling/heating */
  double Compton_cooling_rate = 0.;
  if (onlyicool == 0 || (onlyicool == 1 && icool == cooltype_Compton)) {

    const double zp1 = 1. + redshift;
    const double zp1p2 = zp1 * zp1;
    const double zp1p4 = zp1p2 * zp1p2;

    /* CMB temperature at this redshift */
    const double T_CMB = cooling->T_CMB_0 * zp1;

    /* Analytic Compton cooling rate: Lambda_Compton / n_H**2 */
    Compton_cooling_rate = cooling->compton_rate_cgs * (temp - T_CMB) * zp1p4 *
                           electron_fraction / n_H_cgs;
  }
575

576
577
578
  /* Return the net heating rate (Lambda_heat - Lambda_cool) */
  return heating_rate - cooling_rate - Compton_cooling_rate;
}
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/**
 * @brief Computes the net cooling rate (cooling - heating) for a given element
 * abundance ratio, temperature, redshift, and density. The unit of the net
 * cooling rate is Lambda / nH**2 [erg cm^3 s-1] and all input values are in
 * cgs. The Compton cooling is not taken from the tables but calculated
 * analytically and added separately
 *
 * @param log_T_cgs Log base 10 of temperature in K
 * @param redshift Current redshift
 * @param n_H_cgs Hydrogen number density in cgs
 * @param abundance_ratio Abundance ratio for each element x relative to solar
 * @param n_H_index Index along the Hydrogen number density dimension
 * @param d_n_H Offset between Hydrogen density and table[n_H_index]
 * @param met_index Index along the metallicity dimension
 * @param d_met Offset between metallicity and table[met_index]
 * @param red_index Index along redshift dimension
 * @param d_red Offset between redshift and table[red_index]
 * @param cooling #cooling_function_data structure
 *
 * @param onlyicool if true / 1 only plot cooling channel icool
 * @param onlyiheat if true / 1 only plot cooling channel iheat
 * @param icool cooling channel to be used
 * @param iheat heating channel to be used
 *
 * Throughout the code: onlyicool = onlyiheat = icool = iheat = 0
 * These are only used for testing.
 */
INLINE static double qla_cooling_rate_temperature(
    double log_T_cgs, double redshift, double n_H_cgs,
    const float abundance_ratio[qla_cooling_N_elementtypes], int n_H_index,
    float d_n_H, int met_index, float d_met, int red_index, float d_red,
    const struct cooling_function_data *cooling, int onlyicool, int onlyiheat,
    int icool, int iheat) {

  /* Set weights for cooling rates */
  float weights_cooling[qla_cooling_N_cooltypes - 2];
  for (int i = 0; i < qla_cooling_N_cooltypes - 2; i++) {

    if (i < qla_cooling_N_elementtypes) {
      /* Use abundance ratios */
      weights_cooling[i] = abundance_ratio[i];
    } else if (i == cooltype_Compton) {
      /* added analytically later, do not use value from table*/
      weights_cooling[i] = 0.f;
    } else {
      /* use same abundances as in the tables */
      weights_cooling[i] = 1.f;
    }
  }
629

630
631
632
633
  /* If we care only about one channel, cancel all the other ones */
  if (onlyicool != 0) {
    for (int i = 0; i < qla_cooling_N_cooltypes - 2; i++) {
      if (i != icool) weights_cooling[i] = 0.f;
634
635
636
    }
  }

637
638
639
640
641
642
643
  /* Set weights for heating rates */
  float weights_heating[qla_cooling_N_heattypes - 2];
  for (int i = 0; i < qla_cooling_N_heattypes - 2; i++) {
    if (i < qla_cooling_N_elementtypes) {
      weights_heating[i] = abundance_ratio[i];
    } else {
      weights_heating[i] = 1.f; /* use same abundances as in the tables */
644
645
646
    }
  }

647
648
649
650
651
  /* If we care only about one channel, cancel all the other ones */
  if (onlyiheat != 0) {
    for (int i = 0; i < qla_cooling_N_heattypes - 2; i++) {
      if (i != iheat) weights_heating[i] = 0.f;
    }
652
653
  }

654
655
656
657
658
  /* Get index of T along the internal energy axis */
  int T_index;
  float d_T;
  get_index_1d(cooling->Temp, qla_cooling_N_temperature, log_T_cgs, &T_index,
               &d_T);
659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  /* n_e / n_H */
  const double electron_fraction = interpolation4d_plus_summation(
      cooling->table.Telectron_fraction, abundance_ratio, /* */
      element_H, qla_cooling_N_electrontypes - 4,         /* */
      red_index, T_index, met_index, n_H_index,           /* */
      d_red, d_T, d_met, d_n_H,                           /* */
      qla_cooling_N_redshifts,                            /* */
      qla_cooling_N_temperature,                          /* */
      qla_cooling_N_metallicity,                          /* */
      qla_cooling_N_density,                              /* */
      qla_cooling_N_electrontypes);                       /* */

  /* Lambda / n_H**2 */
  const double cooling_rate = interpolation4d_plus_summation(
      cooling->table.Tcooling, weights_cooling, /* */
      element_H, qla_cooling_N_cooltypes - 3,   /* */
      red_index, T_index, met_index, n_H_index, /* */
      d_red, d_T, d_met, d_n_H,                 /* */
      qla_cooling_N_redshifts,                  /* */
      qla_cooling_N_temperature,                /* */
      qla_cooling_N_metallicity,                /* */
      qla_cooling_N_density,                    /* */
      qla_cooling_N_cooltypes);                 /* */

  /* Gamma / n_H**2 */
  const double heating_rate = interpolation4d_plus_summation(
      cooling->table.Theating, weights_heating, /* */
      element_H, qla_cooling_N_heattypes - 3,   /* */
      red_index, T_index, met_index, n_H_index, /* */
      d_red, d_T, d_met, d_n_H,                 /* */
      qla_cooling_N_redshifts,                  /* */
      qla_cooling_N_temperature,                /* */
      qla_cooling_N_metallicity,                /* */
      qla_cooling_N_density,                    /* */
      qla_cooling_N_heattypes);                 /* */

  const double temp = exp10(log_T_cgs);

  double Compton_cooling_rate = 0.;
  if (onlyicool == 0 || (onlyicool == 1 && icool == cooltype_Compton)) {

    const double zp1 = 1. + redshift;
    const double zp1p2 = zp1 * zp1;
    const double zp1p4 = zp1p2 * zp1p2;

    /* CMB temperature at this redshift */
    const double T_CMB = cooling->T_CMB_0 * zp1;

    /* Analytic Compton cooling rate: Lambda_Compton / n_H**2 */
    Compton_cooling_rate = cooling->compton_rate_cgs * (temp - T_CMB) * zp1p4 *
                           electron_fraction / n_H_cgs;
  }
712

713
714
  /* Return the net heating rate (Lambda_heat - Lambda_cool) */
  return heating_rate - cooling_rate - Compton_cooling_rate;
715
716
717
}

#endif /* SWIFT_QLA_COOLING_RATES_H */