cell.c 168 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "scheduler.h"
65
#include "space.h"
66
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
67
#include "stars.h"
68
#include "timers.h"
69
#include "tools.h"
70
#include "tracers.h"
71

72
73
74
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
75
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

163
164
165
166
167
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
168
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
169
170
  /* Number of cells in this subtree. */
  int count = 1;
171

172
173
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
174
    for (int k = 0; k < 8; k++)
175
176
177
178
179
180
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

181
/**
182
 * @brief Link the cells recursively to the given #part array.
183
184
185
186
187
188
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
189
int cell_link_parts(struct cell *c, struct part *parts) {
190
#ifdef SWIFT_DEBUG_CHECKS
191
192
193
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

194
  if (c->hydro.parts != NULL)
195
196
197
    error("Linking parts into a cell that was already linked");
#endif

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
214
 * @brief Link the cells recursively to the given #gpart array.
215
216
 *
 * @param c The #cell.
217
 * @param gparts The #gpart array.
218
219
220
 *
 * @return The number of particles linked.
 */
221
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
222
223
224
225
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

226
  if (c->grav.parts != NULL)
227
    error("Linking gparts into a cell that was already linked");
228
#endif
229

230
  c->grav.parts = gparts;
231
232
233
234
235
236
237
238
239
240
241

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
242
  return c->grav.count;
243
244
}

245
246
247
248
249
250
251
252
253
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
254
255
256
257
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

258
  if (c->stars.parts != NULL)
259
260
261
    error("Linking sparts into a cell that was already linked");
#endif

262
  c->stars.parts = sparts;
263
264
265
266
267
268
269
270
271
272
273

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
274
  return c->stars.count;
275
276
}

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

310
311
312
313
314
315
316
317
318
319
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
320
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
321
322
#ifdef WITH_MPI

323
324
325
326
327
328
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
329
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
348
349
350
    return count;
  } else {
    return 0;
351
  }
352
353
354
355

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
356
357
}

358
359
360
361
362
363
364
365
366
367
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
368
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
369
370
#ifdef WITH_MPI

371
372
373
374
375
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

376
377
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
378

379
    /* Recursively attach the gparts */
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
396
397
398
    return count;
  } else {
    return 0;
399
  }
400
401
402
403

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
404
405
}

406
407
408
409
410
411
412
413
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
414
int cell_count_parts_for_tasks(const struct cell *c) {
415
416
#ifdef WITH_MPI

417
418
419
420
421
422
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
423
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
424
425
426
427
428
429
430
431
432
433
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
434
435
436
    return count;
  } else {
    return 0;
437
  }
438
439
440
441

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
442
443
}

444
445
446
447
448
449
450
451
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
452
int cell_count_gparts_for_tasks(const struct cell *c) {
453
454
#ifdef WITH_MPI

455
456
457
458
459
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

460
461
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
462
463
464
465
466
467
468
469
470
471
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
472
473
474
    return count;
  } else {
    return 0;
475
  }
476
477
478
479

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
480
481
}

482
483
484
485
486
487
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
488
489
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
490
491
492
 *
 * @return The number of packed cells.
 */
493
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
494
              const int with_gravity) {
495
496
#ifdef WITH_MPI

497
  /* Start by packing the data of the current cell. */
498
  pc->hydro.h_max = c->hydro.h_max;
499
  pc->stars.h_max = c->stars.h_max;
500
501
502
503
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
504
  pc->stars.ti_end_min = c->stars.ti_end_min;
505
  pc->stars.ti_end_max = c->stars.ti_end_max;
506
507
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
508
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
509
  pc->stars.ti_old_part = c->stars.ti_old_part;
510
  pc->hydro.count = c->hydro.count;
511
512
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
513
  pc->maxdepth = c->maxdepth;
514

515
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
516
  if (with_gravity) {
517
    const struct gravity_tensors *mp = c->grav.multipole;
518

519
520
521
522
523
524
525
526
527
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
528
529
  }

530
531
532
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
533
534

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
535
536
  int count = 1;
  for (int k = 0; k < 8; k++)
537
538
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
539
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
540
    } else {
541
      pc->progeny[k] = -1;
542
    }
543
544

  /* Return the number of packed cells used. */
545
  c->mpi.pcell_size = count;
546
  return count;
547
548
549
550
551

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
552
553
}

554
555
556
557
558
559
560
561
562
563
564
565
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
566
  tags[0] = c->mpi.tag;
567
568
569
570
571
572
573
574

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
575
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
576
577
578
579
580
581
582
583
584
585
586
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

587
588
589
590
591
592
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
593
594
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
595
596
597
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
598
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
599
                struct space *restrict s, const int with_gravity) {
600
601
602
#ifdef WITH_MPI

  /* Unpack the current pcell. */
603
  c->hydro.h_max = pc->hydro.h_max;
604
  c->stars.h_max = pc->stars.h_max;
605
606
607
608
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
609
  c->stars.ti_end_min = pc->stars.ti_end_min;
610
  c->stars.ti_end_max = pc->stars.ti_end_max;
611
612
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
613
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
614
  c->stars.ti_old_part = pc->stars.ti_old_part;
615
  c->hydro.count = pc->hydro.count;
616
617
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
618
619
  c->maxdepth = pc->maxdepth;

620
621
622
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
623

624
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
625
  if (with_gravity) {
626
    struct gravity_tensors *mp = c->grav.multipole;
627

628
629
630
631
632
633
634
635
636
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
637
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
638

639
640
641
642
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
643
  c->split = 0;
644
645
646
647
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
648
      temp->hydro.count = 0;
649
650
      temp->grav.count = 0;
      temp->stars.count = 0;
651
652
653
654
655
656
657
658
659
660
661
662
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
663
      temp->hydro.dx_max_part = 0.f;
664
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
665
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
666
      temp->stars.dx_max_sort = 0.f;
667
668
669
670
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
671
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
672
673
674
    }

  /* Return the total number of unpacked cells. */
675
  c->mpi.pcell_size = count;
676
677
678
679
680
681
682
683
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

684
685
686
687
688
689
690
691
692
693
694
695
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
696
  c->mpi.tag = tags[0];
697
698
699
700
701
702
703
704
705
706
707

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
708
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
709
710
711
712
713
714
715
716
717
718
719
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

720
721
722
723
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
724
 * @param pcells (output) The end-of-timestep information we pack into
725
726
727
 *
 * @return The number of packed cells.
 */
728
729
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
730
731
#ifdef WITH_MPI

732
  /* Pack this cell's data. */
733
734
735
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
736

737
738
739
740
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
741
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
742
743
744
745
    }

  /* Return the number of packed values. */
  return count;
746
747
748
749
750

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
751
752
}

753
754
755
756
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
757
 * @param pcells The end-of-timestep information to unpack
758
759
760
 *
 * @return The number of cells created.
 */
761
762
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
763
764
#ifdef WITH_MPI

765
  /* Unpack this cell's data. */
766
767
768
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
769

770
771
772
773
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
905
906
907
    }

  /* Return the number of packed values. */
908
  return count;
909
910
911
912
913

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
914
}
915

916
917
918
919
920
921
922
923
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
924
925
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
958
959
int cell_unpack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

984
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
985
986
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
987
988
989
990
991
992
993
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
994
                         struct gravity_tensors *restrict pcells) {
995
996
997
#ifdef WITH_MPI

  /* Pack this cell's data. */
998
  pcells[0] = *c->grav.multipole;
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
1025
                           struct gravity_tensors *restrict pcells) {
1026
1027
1028
#ifdef WITH_MPI

  /* Unpack this cell's data. */
1029
  *c->grav.multipole = pcells[0];
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

1047
/**
1048
 * @brief Lock a cell for access to its array of #part and hold its parents.
1049
1050
 *
 * @param c The #cell.
1051
 * @return 0 on success, 1 on failure
1052
 */
1053
1054
1055
1056
int cell_locktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1057
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
1058
1059
1060
1061
1062
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1063
  if (c->hydro.hold) {
1064
    /* Unlock this cell. */
1065
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1066
1067
1068
1069
1070
1071
1072

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1073
  struct cell *finger;
1074
1075
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1076
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1077
1078

    /* Increment the hold. */
1079
    atomic_inc(&finger->hydro.hold);
1080
1081

    /* Unlock the cell. */
1082
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1094
1095
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1096
      atomic_dec(&finger2->hydro.hold);
1097
1098

    /* Unlock this cell. */
1099
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1100
1101
1102
1103
1104
1105
1106

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1107
1108
1109
1110
1111
1112
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1113
1114
1115
1116
int cell_glocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1117
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1118
1119
1120
1121
1122
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1123
  if (c->grav.phold) {
1124
    /* Unlock this cell. */
1125
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1126
1127
1128
1129
1130
1131
1132

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1133
  struct cell *finger;
1134
1135
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1136
    if (lock_trylock(&finger->grav.plock) != 0) break;
1137
1138

    /* Increment the hold. */
1139
    atomic_inc(&finger->grav.phold);
1140
1141

    /* Unlock the cell. */
1142
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1154
1155
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1156
      atomic_dec(&finger2->grav.phold);
1157
1158

    /* Unlock this cell. */
1159
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1160
1161
1162
1163
1164
1165

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1166

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1177
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1178
1179
1180
1181
1182
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1183
  if (c->grav.mhold) {
1184
    /* Unlock this cell. */
1185
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1196
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1197
1198

    /* Increment the hold. */
1199
    atomic_inc(&finger->grav.mhold);
1200
1201

    /* Unlock the cell. */
1202
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1216
      atomic_dec(&finger2->grav.mhold);
1217
1218

    /* Unlock this cell. */
1219
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1220
1221
1222
1223
1224
1225
1226

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to lock this cell. */
1237
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1238
1239
1240
1241
1242
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1243
  if (c->stars.hold) {
1244
    /* Unlock this cell. */
1245
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {
    /* Lock this cell. */
1256
    if (lock_trylock(&finger->stars.lock) != 0) break;
1257
1258

    /* Increment the hold. */
1259
    atomic_inc(&finger->stars.hold);
1260
1261

    /* Unlock the cell. */
1262
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {
    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1276
      atomic_dec(&finger2->stars.hold);
1277
1278

    /* Unlock this cell. */
1279
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1280
1281
1282
1283
1284
1285
1286

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1287
/**
1288
 * @brief Unlock a cell's parents for access to #part array.
1289
1290
1291
 *
 * @param c The #cell.
 */
1292
1293
1294
1295
void cell_unlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1296
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1297
1298

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1299
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1300
    atomic_dec(&finger->hydro.hold);
1301
1302
1303
1304

  TIMER_TOC(timer_locktree);
}

1305
1306
1307
1308
1309
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1310
1311
1312
1313
void cell_gunlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1314
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1315
1316

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1317
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1318
    atomic_dec(&finger->grav.phold);
1319
1320
1321
1322

  TIMER_TOC(timer_locktree);
}

1323
1324
1325
1326
1327
1328
1329
1330
1331
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {
  TIMER_TIC

  /* First of all, try to unlock this cell. */
1332
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1333
1334
1335

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1336
    atomic_dec(&finger->grav.mhold);
1337
1338
1339
1340

  TIMER_TOC(timer_locktree);
}

Matthieu Schaller's avatar