cell.c 182 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
56
#include "error.h"
57
#include "gravity.h"
58
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
59
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
60
#include "memswap.h"
61
#include "minmax.h"
62
#include "scheduler.h"
63
#include "space.h"
64
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
65
#include "stars.h"
66
#include "timers.h"
67
#include "tools.h"
68
#include "tracers.h"
69

70
71
72
/* Global variables. */
int cell_next_tag = 0;

73
74
75
76
77
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
78
int cell_getsize(struct cell *c) {
79

Pedro Gonnet's avatar
Pedro Gonnet committed
80
81
  /* Number of cells in this subtree. */
  int count = 1;
82

83
84
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
85
    for (int k = 0; k < 8; k++)
86
87
88
89
90
91
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

92
/**
93
 * @brief Link the cells recursively to the given #part array.
94
95
96
97
98
99
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
100
101
int cell_link_parts(struct cell *c, struct part *parts) {

102
#ifdef SWIFT_DEBUG_CHECKS
103
104
105
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

106
  if (c->hydro.parts != NULL)
107
108
109
    error("Linking parts into a cell that was already linked");
#endif

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
126
 * @brief Link the cells recursively to the given #gpart array.
127
128
 *
 * @param c The #cell.
129
 * @param gparts The #gpart array.
130
131
132
 *
 * @return The number of particles linked.
 */
133
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
134
135
136
137
138

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

139
  if (c->grav.parts != NULL)
140
    error("Linking gparts into a cell that was already linked");
141
#endif
142

143
  c->grav.parts = gparts;
144
145
146
147
148
149
150
151
152
153
154

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
155
  return c->grav.count;
156
157
}

158
159
160
161
162
163
164
165
166
167
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

168
169
170
171
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

172
  if (c->stars.parts != NULL)
173
174
175
    error("Linking sparts into a cell that was already linked");
#endif

176
  c->stars.parts = sparts;
177
178
179
180
181
182
183
184
185
186
187

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
188
  return c->stars.count;
189
190
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

224
225
226
227
228
229
230
231
232
233
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
234
235
int cell_link_foreign_parts(struct cell *c, struct part *parts) {

236
237
#ifdef WITH_MPI

238
239
240
241
242
243
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
244
  if (c->mpi.hydro.recv_xv != NULL) {
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
263
264
265
    return count;
  } else {
    return 0;
266
  }
267
268
269
270

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
271
272
}

273
274
275
276
277
278
279
280
281
282
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
283
284
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {

285
286
#ifdef WITH_MPI

287
288
289
290
291
292
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
293
  if (c->mpi.grav.recv != NULL) {
294

295
    /* Recursively attach the gparts */
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
312
313
314
    return count;
  } else {
    return 0;
315
  }
316
317
318
319

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
320
321
}

322
323
324
325
326
327
328
329
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
330
331
int cell_count_parts_for_tasks(const struct cell *c) {

332
333
#ifdef WITH_MPI

334
335
336
337
338
339
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
340
  if (c->mpi.hydro.recv_xv != NULL) {
341
342
343
344
345
346
347
348
349
350
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
351
352
353
    return count;
  } else {
    return 0;
354
  }
355
356
357
358

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
359
360
}

361
362
363
364
365
366
367
368
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
369
370
int cell_count_gparts_for_tasks(const struct cell *c) {

371
372
#ifdef WITH_MPI

373
374
375
376
377
378
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
379
  if (c->mpi.grav.recv != NULL) {
380
381
382
383
384
385
386
387
388
389
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
390
391
392
    return count;
  } else {
    return 0;
393
  }
394
395
396
397

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
398
399
}

400
401
402
403
404
405
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
406
407
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
408
409
410
 *
 * @return The number of packed cells.
 */
411
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
412
              const int with_gravity) {
413

414
415
#ifdef WITH_MPI

416
  /* Start by packing the data of the current cell. */
417
  pc->hydro.h_max = c->hydro.h_max;
418
  pc->stars.h_max = c->stars.h_max;
419
420
421
422
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
423
  pc->stars.ti_end_min = c->stars.ti_end_min;
424
  pc->stars.ti_end_max = c->stars.ti_end_max;
425
426
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
427
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
428
  pc->stars.ti_old_part = c->stars.ti_old_part;
429
  pc->hydro.count = c->hydro.count;
430
431
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
432
  pc->maxdepth = c->maxdepth;
433

434
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
435
  if (with_gravity) {
436
    const struct gravity_tensors *mp = c->grav.multipole;
437

438
439
440
441
442
443
444
445
446
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
447
448
  }

449
450
451
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
452
453

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
454
455
  int count = 1;
  for (int k = 0; k < 8; k++)
456
457
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
458
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
459
    } else {
460
      pc->progeny[k] = -1;
461
    }
462
463

  /* Return the number of packed cells used. */
464
  c->mpi.pcell_size = count;
465
  return count;
466
467
468
469
470

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
471
472
}

473
474
475
476
477
478
479
480
481
482
483
484
485
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
486
  tags[0] = c->mpi.tag;
487
488
489
490
491
492
493
494

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
495
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
496
497
498
499
500
501
502
503
504
505
506
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

507
508
509
510
511
512
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
513
514
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
515
516
517
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
518
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
519
                struct space *restrict s, const int with_gravity) {
520
521
522
523

#ifdef WITH_MPI

  /* Unpack the current pcell. */
524
  c->hydro.h_max = pc->hydro.h_max;
525
  c->stars.h_max = pc->stars.h_max;
526
527
528
529
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
530
  c->stars.ti_end_min = pc->stars.ti_end_min;
531
  c->stars.ti_end_max = pc->stars.ti_end_max;
532
533
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
534
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
535
  c->stars.ti_old_part = pc->stars.ti_old_part;
536
  c->hydro.count = pc->hydro.count;
537
538
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
539
540
  c->maxdepth = pc->maxdepth;

541
542
543
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
544

545
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
546
  if (with_gravity) {
547

548
    struct gravity_tensors *mp = c->grav.multipole;
549

550
551
552
553
554
555
556
557
558
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
559
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
560

561
562
563
564
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
565
  c->split = 0;
566
567
568
569
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
570
      temp->hydro.count = 0;
571
572
      temp->grav.count = 0;
      temp->stars.count = 0;
573
574
575
576
577
578
579
580
581
582
583
584
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
585
      temp->hydro.dx_max_part = 0.f;
586
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
587
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
588
      temp->stars.dx_max_sort = 0.f;
589
590
591
592
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
593
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
594
595
596
    }

  /* Return the total number of unpacked cells. */
597
  c->mpi.pcell_size = count;
598
599
600
601
602
603
604
605
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

606
607
608
609
610
611
612
613
614
615
616
617
618
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
619
  c->mpi.tag = tags[0];
620
621
622
623
624
625
626
627
628
629
630

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
631
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
632
633
634
635
636
637
638
639
640
641
642
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

643
644
645
646
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
647
 * @param pcells (output) The end-of-timestep information we pack into
648
649
650
 *
 * @return The number of packed cells.
 */
651
652
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
653

654
655
#ifdef WITH_MPI

656
  /* Pack this cell's data. */
657
658
659
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
660

661
662
663
664
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
665
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
666
667
668
669
    }

  /* Return the number of packed values. */
  return count;
670
671
672
673
674

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
675
676
}

677
678
679
680
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
681
 * @param pcells The end-of-timestep information to unpack
682
683
684
 *
 * @return The number of cells created.
 */
685
686
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
687

688
689
#ifdef WITH_MPI

690
  /* Unpack this cell's data. */
691
692
693
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
694

695
696
697
698
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
834
835
836
    }

  /* Return the number of packed values. */
837
  return count;
838
839
840
841
842

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
843
}
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_black_holes(struct cell *restrict c,
                             struct pcell_step_black_holes *restrict pcells) {

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_black_holes(struct cell *restrict c,
                               struct pcell_step_black_holes *restrict pcells) {

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->black_holes.ti_end_min = pcells[0].ti_end_min;
  c->black_holes.ti_end_max = pcells[0].ti_end_max;
  c->black_holes.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

913
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
914
915
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
916
917
918
919
920
921
922
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
923
                         struct gravity_tensors *restrict pcells) {
924
925
926
927

#ifdef WITH_MPI

  /* Pack this cell's data. */
928
  pcells[0] = *c->grav.multipole;
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
955
                           struct gravity_tensors *restrict pcells) {
956
957
958
959

#ifdef WITH_MPI

  /* Unpack this cell's data. */
960
  *c->grav.multipole = pcells[0];
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

978
/**
979
 * @brief Lock a cell for access to its array of #part and hold its parents.
980
981
 *
 * @param c The #cell.
982
 * @return 0 on success, 1 on failure
983
 */
984
985
986
987
988
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
989
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
990
991
992
993
994
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
995
  if (c->hydro.hold) {
996
997

    /* Unlock this cell. */
998
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
999
1000
1001
1002
1003
1004
1005

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1006
  struct cell *finger;
1007
1008
1009
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1010
    if (lock_trylock(&finger->hydro.lock) != 0) break;
1011
1012

    /* Increment the hold. */
1013
    atomic_inc(&finger->hydro.hold);
1014
1015

    /* Unlock the cell. */
1016
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1029
1030
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1031
      atomic_dec(&finger2->hydro.hold);
1032
1033

    /* Unlock this cell. */
1034
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1035
1036
1037
1038
1039
1040
1041

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1042
1043
1044
1045
1046
1047
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
1048
1049
1050
1051
1052
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1053
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
1054
1055
1056
1057
1058
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1059
  if (c->grav.phold) {
1060
1061

    /* Unlock this cell. */
1062
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1063
1064
1065
1066
1067
1068
1069

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1070
  struct cell *finger;
1071
1072
1073
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1074
    if (lock_trylock(&finger->grav.plock) != 0) break;
1075
1076

    /* Increment the hold. */
1077
    atomic_inc(&finger->grav.phold);
1078
1079

    /* Unlock the cell. */
1080
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1093
1094
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1095
      atomic_dec(&finger2->grav.phold);
1096
1097

    /* Unlock this cell. */
1098
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1099
1100
1101
1102
1103
1104

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1117
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
1118
1119
1120
1121
1122
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1123
  if (c->grav.mhold) {
1124
1125

    /* Unlock this cell. */
1126
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1138
    if (lock_trylock(&finger->grav.mlock) != 0) break;
1139
1140

    /* Increment the hold. */
1141
    atomic_inc(&finger->grav.mhold);
1142
1143

    /* Unlock the cell. */
1144
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1159
      atomic_dec(&finger2->grav.mhold);
1160
1161

    /* Unlock this cell. */
1162
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1163
1164
1165
1166
1167
1168
1169

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
1181
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
1182
1183
1184
1185
1186
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
1187
  if (c->stars.hold) {
1188
1189

    /* Unlock this cell. */
1190
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
1202
    if (lock_trylock(&finger->stars.lock) != 0) break;
1203
1204

    /* Increment the hold. */
1205
    atomic_inc(&finger->stars.hold);
1206
1207

    /* Unlock the cell. */
1208
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
1223
      atomic_dec(&finger2->stars.hold);
1224
1225

    /* Unlock this cell. */
1226
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1227
1228
1229
1230
1231
1232
1233

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

1234
/**
1235
 * @brief Unlock a cell's parents for access to #part array.
1236
1237
1238
 *
 * @param c The #cell.
 */
1239
1240
1241
1242
1243
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1244
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
1245
1246

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1247
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1248
    atomic_dec(&finger->hydro.hold);
1249
1250
1251
1252

  TIMER_TOC(timer_locktree);
}

1253
1254
1255
1256
1257
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
1258
1259
1260
1261
1262
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1263
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
1264
1265

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1266
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1267
    atomic_dec(&finger->grav.phold);
1268
1269
1270
1271

  TIMER_TOC(timer_locktree);
}

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1282
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
1283
1284
1285

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1286
    atomic_dec(&finger->grav.mhold);
1287
1288
1289
1290

  TIMER_TOC(timer_locktree);
}

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
1301
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
1302
1303
1304

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
1305
    atomic_dec(&finger->stars.hold);
1306
1307
1308
1309

  TIMER_TOC(timer_locktree);
}

1310
1311
1312
1313
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
1314
 * @param parts_offset Offset of the cell parts array relative to the
1315
 *        space's parts array, i.e. c->hydro.parts - s->parts.
1316
 * @param sparts_offset Offset of the cell sparts array relative to the
1317
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
1318
1319
1320
 * @param bparts_offset Offset of the cell bparts array relative to the
 *        space's bparts array, i.e. c->black_holes.parts -
 * s->black_holes.parts.
1321
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
1322
 * entries, used for sorting indices.
1323
1324
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
<