mesh_gravity.c 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#ifdef HAVE_FFTW
#include <fftw3.h>
#endif

/* This object's header. */
#include "mesh_gravity.h"

/* Local includes. */
#include "active.h"
#include "debug.h"
#include "engine.h"
#include "error.h"
#include "gravity_properties.h"
#include "kernel_long_gravity.h"
#include "part.h"
#include "runner.h"
#include "space.h"

41
42
#ifdef HAVE_FFTW

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/**
 * @brief Returns 1D index of a 3D NxNxN array using row-major style.
 *
 * Wraps around in the corresponding dimension if any of the 3 indices is >= N
 * or < 0.
 *
 * @param i Index along x.
 * @param j Index along y.
 * @param k Index along z.
 * @param N Size of the array along one axis.
 */
__attribute__((always_inline)) INLINE static int row_major_id_periodic(int i,
                                                                       int j,
                                                                       int k,
                                                                       int N) {
  return (((i + N) % N) * N * N + ((j + N) % N) * N + ((k + N) % N));
}

/**
 * @brief Interpolate values from a the mesh using CIC.
 *
 * @param mesh The mesh to read from.
 * @param i The index of the cell along x
 * @param j The index of the cell along y
 * @param k The index of the cell along z
 * @param tx First CIC coefficient along x
 * @param ty First CIC coefficient along y
 * @param tz First CIC coefficient along z
 * @param dx Second CIC coefficient along x
 * @param dy Second CIC coefficient along y
 * @param dz Second CIC coefficient along z
 */
__attribute__((always_inline)) INLINE static double CIC_get(
    double mesh[6][6][6], int i, int j, int k, double tx, double ty, double tz,
    double dx, double dy, double dz) {

  double temp;
  temp = mesh[i + 0][j + 0][k + 0] * tx * ty * tz;
  temp += mesh[i + 0][j + 0][k + 1] * tx * ty * dz;
  temp += mesh[i + 0][j + 1][k + 0] * tx * dy * tz;
  temp += mesh[i + 0][j + 1][k + 1] * tx * dy * dz;
  temp += mesh[i + 1][j + 0][k + 0] * dx * ty * tz;
  temp += mesh[i + 1][j + 0][k + 1] * dx * ty * dz;
  temp += mesh[i + 1][j + 1][k + 0] * dx * dy * tz;
  temp += mesh[i + 1][j + 1][k + 1] * dx * dy * dz;

  return temp;
}

/**
 * @brief Interpolate a value to a mesh using CIC.
 *
 * @param mesh The mesh to write to
 * @param N The side-length of the mesh
 * @param i The index of the cell along x
 * @param j The index of the cell along y
 * @param k The index of the cell along z
 * @param tx First CIC coefficient along x
 * @param ty First CIC coefficient along y
 * @param tz First CIC coefficient along z
 * @param dx Second CIC coefficient along x
 * @param dy Second CIC coefficient along y
 * @param dz Second CIC coefficient along z
 * @param value The value to interpolate.
 */
__attribute__((always_inline)) INLINE static void CIC_set(
    double* mesh, int N, int i, int j, int k, double tx, double ty, double tz,
    double dx, double dy, double dz, double value) {

  /* Classic CIC interpolation */
  mesh[row_major_id_periodic(i + 0, j + 0, k + 0, N)] += value * tx * ty * tz;
  mesh[row_major_id_periodic(i + 0, j + 0, k + 1, N)] += value * tx * ty * dz;
  mesh[row_major_id_periodic(i + 0, j + 1, k + 0, N)] += value * tx * dy * tz;
  mesh[row_major_id_periodic(i + 0, j + 1, k + 1, N)] += value * tx * dy * dz;
  mesh[row_major_id_periodic(i + 1, j + 0, k + 0, N)] += value * dx * ty * tz;
  mesh[row_major_id_periodic(i + 1, j + 0, k + 1, N)] += value * dx * ty * dz;
  mesh[row_major_id_periodic(i + 1, j + 1, k + 0, N)] += value * dx * dy * tz;
  mesh[row_major_id_periodic(i + 1, j + 1, k + 1, N)] += value * dx * dy * dz;
}

/**
 * @brief Assigns a given #gpart to a density mesh using the CIC method.
 *
 * @param gp The #gpart.
 * @param rho The density mesh.
 * @param N the size of the mesh along one axis.
 * @param fac The width of a mesh cell.
 * @param dim The dimensions of the simulation box.
 */
INLINE static void gpart_to_mesh_CIC(const struct gpart* gp, double* rho, int N,
                                     double fac, const double dim[3]) {

  /* Box wrap the multipole's position */
  const double pos_x = box_wrap(gp->x[0], 0., dim[0]);
  const double pos_y = box_wrap(gp->x[1], 0., dim[1]);
  const double pos_z = box_wrap(gp->x[2], 0., dim[2]);

  /* Workout the CIC coefficients */
  int i = (int)(fac * pos_x);
  if (i >= N) i = N - 1;
  const double dx = fac * pos_x - i;
  const double tx = 1. - dx;

  int j = (int)(fac * pos_y);
  if (j >= N) j = N - 1;
  const double dy = fac * pos_y - j;
  const double ty = 1. - dy;

  int k = (int)(fac * pos_z);
  if (k >= N) k = N - 1;
  const double dz = fac * pos_z - k;
  const double tz = 1. - dz;

#ifdef SWIFT_DEBUG_CHECKS
  if (i < 0 || i >= N) error("Invalid gpart position in x");
  if (j < 0 || j >= N) error("Invalid gpart position in y");
  if (k < 0 || k >= N) error("Invalid gpart position in z");
#endif

  const double mass = gp->mass;

  /* CIC ! */
  CIC_set(rho, N, i, j, k, tx, ty, tz, dx, dy, dz, mass);
}

/**
 * @brief Computes the potential on a gpart from a given mesh using the CIC
 * method.
 *
 * Debugging routine.
 *
 * @param gp The #gpart.
 * @param pot The potential mesh.
 * @param N the size of the mesh along one axis.
 * @param fac width of a mesh cell.
 * @param dim The dimensions of the simulation box.
 */
void mesh_to_gparts_CIC(struct gpart* gp, const double* pot, int N, double fac,
                        const double dim[3]) {

183
  /* Box wrap the gpart's position */
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  const double pos_x = box_wrap(gp->x[0], 0., dim[0]);
  const double pos_y = box_wrap(gp->x[1], 0., dim[1]);
  const double pos_z = box_wrap(gp->x[2], 0., dim[2]);

  int i = (int)(fac * pos_x);
  if (i >= N) i = N - 1;
  const double dx = fac * pos_x - i;
  const double tx = 1. - dx;

  int j = (int)(fac * pos_y);
  if (j >= N) j = N - 1;
  const double dy = fac * pos_y - j;
  const double ty = 1. - dy;

  int k = (int)(fac * pos_z);
  if (k >= N) k = N - 1;
  const double dz = fac * pos_z - k;
  const double tz = 1. - dz;

#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
204
205
206
  if (i < 0 || i >= N) error("Invalid gpart position in x");
  if (j < 0 || j >= N) error("Invalid gpart position in y");
  if (k < 0 || k >= N) error("Invalid gpart position in z");
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#endif

#ifdef SWIFT_GRAVITY_FORCE_CHECKS
  if (gp->a_grav_PM[0] != 0. || gp->potential_PM != 0.)
    error("Particle with non-initalised stuff");
#endif

  /* First, copy the necessary part of the mesh for stencil operations */
  /* This includes box-wrapping in all 3 dimensions. */
  double phi[6][6][6];
  for (int iii = -2; iii <= 3; ++iii) {
    for (int jjj = -2; jjj <= 3; ++jjj) {
      for (int kkk = -2; kkk <= 3; ++kkk) {
        phi[iii + 2][jjj + 2][kkk + 2] =
            pot[row_major_id_periodic(i + iii, j + jjj, k + kkk, N)];
      }
    }
  }

  /* Some local accumulators */
  double p = 0.;
  double a[3] = {0.};

  /* Indices of (i,j,k) in the local copy of the mesh */
  const int ii = 2, jj = 2, kk = 2;

  /* Simple CIC for the potential itself */
  p += CIC_get(phi, ii, jj, kk, tx, ty, tz, dx, dy, dz);

  /* ---- */

  /* 5-point stencil along each axis for the accelerations */
  a[0] += (1. / 12.) * CIC_get(phi, ii + 2, jj, kk, tx, ty, tz, dx, dy, dz);
  a[0] -= (2. / 3.) * CIC_get(phi, ii + 1, jj, kk, tx, ty, tz, dx, dy, dz);
  a[0] += (2. / 3.) * CIC_get(phi, ii - 1, jj, kk, tx, ty, tz, dx, dy, dz);
  a[0] -= (1. / 12.) * CIC_get(phi, ii - 2, jj, kk, tx, ty, tz, dx, dy, dz);

  a[1] += (1. / 12.) * CIC_get(phi, ii, jj + 2, kk, tx, ty, tz, dx, dy, dz);
  a[1] -= (2. / 3.) * CIC_get(phi, ii, jj + 1, kk, tx, ty, tz, dx, dy, dz);
  a[1] += (2. / 3.) * CIC_get(phi, ii, jj - 1, kk, tx, ty, tz, dx, dy, dz);
  a[1] -= (1. / 12.) * CIC_get(phi, ii, jj - 2, kk, tx, ty, tz, dx, dy, dz);

  a[2] += (1. / 12.) * CIC_get(phi, ii, jj, kk + 2, tx, ty, tz, dx, dy, dz);
  a[2] -= (2. / 3.) * CIC_get(phi, ii, jj, kk + 1, tx, ty, tz, dx, dy, dz);
  a[2] += (2. / 3.) * CIC_get(phi, ii, jj, kk - 1, tx, ty, tz, dx, dy, dz);
  a[2] -= (1. / 12.) * CIC_get(phi, ii, jj, kk - 2, tx, ty, tz, dx, dy, dz);

  /* ---- */

  /* Store things back */
257
  gravity_add_comoving_potential(gp, p);
258
259
260
261
262
263
264
265
266
267
268
  gp->a_grav[0] += fac * a[0];
  gp->a_grav[1] += fac * a[1];
  gp->a_grav[2] += fac * a[2];
#ifdef SWIFT_GRAVITY_FORCE_CHECKS
  gp->potential_PM = p;
  gp->a_grav_PM[0] = fac * a[0];
  gp->a_grav_PM[1] = fac * a[1];
  gp->a_grav_PM[2] = fac * a[2];
#endif
}

269
270
#endif

271
272
273
274
275
/**
 * @brief Compute the potential, including periodic correction on the mesh.
 *
 * Interpolates the top-level multipoles on-to a mesh, move to Fourier space,
 * compute the potential including short-range correction and move back
276
277
278
 * to real space. We use CIC for the interpolation.
 *
 * Note that there is no multiplication by G_newton at this stage.
279
280
 *
 * @param mesh The #pm_mesh used to store the potential.
281
282
 * @param s The #space containing the particles.
 * @param verbose Are we talkative?
283
 */
284
void pm_mesh_compute_potential(struct pm_mesh* mesh, const struct space* s,
Matthieu Schaller's avatar
Matthieu Schaller committed
285
                               int verbose) {
286
287
288

#ifdef HAVE_FFTW

289
  const double r_s = mesh->r_s;
290
291
292
  const double box_size = s->dim[0];
  const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};

293
  if (r_s <= 0.) error("Invalid value of a_smooth");
294
295
  if (mesh->dim[0] != dim[0] || mesh->dim[1] != dim[1] ||
      mesh->dim[2] != dim[2])
296
    error("Domain size does not match the value stored in the space.");
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

  /* Some useful constants */
  const int N = mesh->N;
  const int N_half = N / 2;
  const double cell_fac = N / box_size;

  /* Use the memory allocated for the potential to temporarily store rho */
  double* restrict rho = mesh->potential;
  if (rho == NULL) error("Error allocating memory for density mesh");
  bzero(rho, N * N * N * sizeof(double));

  /* Allocates some memory for the mesh in Fourier space */
  fftw_complex* restrict frho =
      (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * N * N * (N_half + 1));
  if (frho == NULL)
    error("Error allocating memory for transform of density mesh");

  /* Prepare the FFT library */
  fftw_plan forward_plan = fftw_plan_dft_r2c_3d(
      N, N, N, rho, frho, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
  fftw_plan inverse_plan = fftw_plan_dft_c2r_3d(
      N, N, N, frho, rho, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);

320
  ticks tic = getticks();
321
322

  /* Zero everything */
323
324
  bzero(rho, N * N * N * sizeof(double));

Matthieu Schaller's avatar
Matthieu Schaller committed
325
  /* Do a CIC mesh assignment of the gparts */
326
327
328
  for (size_t i = 0; i < s->nr_gparts; ++i)
    gpart_to_mesh_CIC(&s->gparts[i], rho, N, cell_fac, dim);

Matthieu Schaller's avatar
Matthieu Schaller committed
329
  if (verbose)
330
    message("Gpart assignment took %.3f %s.",
Matthieu Schaller's avatar
Matthieu Schaller committed
331
            clocks_from_ticks(getticks() - tic), clocks_getunit());
332

333
334
335
336
337
338
#ifdef WITH_MPI

  MPI_Barrier(MPI_COMM_WORLD);
  tic = getticks();

  /* Merge everybody's share of the density mesh */
Matthieu Schaller's avatar
Matthieu Schaller committed
339
340
  MPI_Allreduce(MPI_IN_PLACE, rho, N * N * N, MPI_DOUBLE, MPI_SUM,
                MPI_COMM_WORLD);
341
342
343
344
345
346

  if (verbose)
    message("Mesh comunication took %.3f %s.",
            clocks_from_ticks(getticks() - tic), clocks_getunit());
#endif

347
  /* message("\n\n\n DENSITY"); */
348
349
  /* print_array(rho, N); */

350
351
  const ticks tic2 = getticks();

352
353
354
355
356
357
358
359
  /* Fourier transform to go to magic-land */
  fftw_execute(forward_plan);

  /* frho now contains the Fourier transform of the density field */
  /* frho contains NxNx(N/2+1) complex numbers */

  /* Some common factors */
  const double green_fac = -1. / (M_PI * box_size);
360
  const double a_smooth2 = 4. * M_PI * M_PI * r_s * r_s / (box_size * box_size);
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  const double k_fac = M_PI / (double)N;

  /* Now de-convolve the CIC kernel and apply the Green function */
  for (int i = 0; i < N; ++i) {

    /* kx component of vector in Fourier space and 1/sinc(kx) */
    const int kx = (i > N_half ? i - N : i);
    const double kx_d = (double)kx;
    const double fx = k_fac * kx_d;
    const double sinc_kx_inv = (kx != 0) ? fx / sin(fx) : 1.;

    for (int j = 0; j < N; ++j) {

      /* ky component of vector in Fourier space and 1/sinc(ky) */
      const int ky = (j > N_half ? j - N : j);
      const double ky_d = (double)ky;
      const double fy = k_fac * ky_d;
      const double sinc_ky_inv = (ky != 0) ? fy / sin(fy) : 1.;

      for (int k = 0; k < N_half + 1; ++k) {

        /* kz component of vector in Fourier space and 1/sinc(kz) */
        const int kz = (k > N_half ? k - N : k);
        const double kz_d = (double)kz;
        const double fz = k_fac * kz_d;
        const double sinc_kz_inv = (kz != 0) ? fz / (sin(fz) + FLT_MIN) : 1.;

        /* Norm of vector in Fourier space */
        const double k2 = (kx_d * kx_d + ky_d * ky_d + kz_d * kz_d);

        /* Avoid FPEs... */
        if (k2 == 0.) continue;

        /* Green function */
        double W = 1.;
        fourier_kernel_long_grav_eval(k2 * a_smooth2, &W);
        const double green_cor = green_fac * W / (k2 + FLT_MIN);

        /* Deconvolution of CIC */
        const double CIC_cor = sinc_kx_inv * sinc_ky_inv * sinc_kz_inv;
        const double CIC_cor2 = CIC_cor * CIC_cor;
        const double CIC_cor4 = CIC_cor2 * CIC_cor2;

        /* Combined correction */
        const double total_cor = green_cor * CIC_cor4;

        /* Apply to the mesh */
        const int index = N * (N_half + 1) * i + (N_half + 1) * j + k;
        frho[index][0] *= total_cor;
        frho[index][1] *= total_cor;
      }
    }
  }

  /* Correct singularity at (0,0,0) */
  frho[0][0] = 0.;
  frho[0][1] = 0.;

  /* Fourier transform to come back from magic-land */
  fftw_execute(inverse_plan);

  /* rho now contains the potential */
  /* This array is now again NxNxN real numbers */
  /* Let's store it in the structure */
  mesh->potential = rho;

Matthieu Schaller's avatar
Matthieu Schaller committed
427
428
429
  if (verbose)
    message("Fourier-space PM took %.3f %s.",
            clocks_from_ticks(getticks() - tic2), clocks_getunit());
430

431
432
433
434
435
436
437
438
439
440
441
442
443
  /* message("\n\n\n POTENTIAL"); */
  /* print_array(potential, N); */

  /* Clean-up the mess */
  fftw_destroy_plan(forward_plan);
  fftw_destroy_plan(inverse_plan);
  fftw_free(frho);

#else
  error("No FFTW library found. Cannot compute periodic long-range forces.");
#endif
}

444
445
446
447
448
449
450
451
452
/**
 * @brief Interpolate the forces and potential from the mesh to the #gpart.
 *
 * We use CIC interpolation. The resulting accelerations and potential must
 * be multiplied by G_newton.
 *
 * @param mesh The #pm_mesh (containing the potential) to interpolate from.
 * @param e The #engine (to check active status).
 * @param gparts The #gpart to interpolate to.
453
 * @param gcount The number of #gpart.
454
 */
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
void pm_mesh_interpolate_forces(const struct pm_mesh* mesh,
                                const struct engine* e, struct gpart* gparts,
                                int gcount) {

#ifdef HAVE_FFTW

  const int N = mesh->N;
  const double cell_fac = mesh->cell_fac;
  const double* potential = mesh->potential;
  const double dim[3] = {e->s->dim[0], e->s->dim[1], e->s->dim[2]};

  /* Get the potential from the mesh to the active gparts using CIC */
  for (int i = 0; i < gcount; ++i) {
    struct gpart* gp = &gparts[i];

    if (gpart_is_active(gp, e))
      mesh_to_gparts_CIC(gp, potential, N, cell_fac, dim);
  }
#else
  error("No FFTW library found. Cannot compute periodic long-range forces.");
#endif
}

/**
 * @brief Initialisses the mesh used for the long-range periodic forces
 *
 * @param mesh The #pm_mesh to initialise.
 * @param props The propoerties of the gravity scheme.
483
 * @param dim The (comoving) side-lengths of the simulation volume.
484
485
 */
void pm_mesh_init(struct pm_mesh* mesh, const struct gravity_props* props,
486
                  double dim[3]) {
487
488
489

#ifdef HAVE_FFTW

490
491
492
  if (dim[0] != dim[1] || dim[0] != dim[1])
    error("Doing mesh-gravity on a non-cubic domain");

493
  const int N = props->mesh_size;
494
495
496
  const double box_size = dim[0];

  mesh->periodic = 1;
497
  mesh->N = N;
498
499
500
  mesh->dim[0] = dim[0];
  mesh->dim[1] = dim[1];
  mesh->dim[2] = dim[2];
501
  mesh->cell_fac = N / box_size;
502
503
  mesh->r_s = props->a_smooth * box_size / N;
  mesh->r_s_inv = 1. / mesh->r_s;
504
505
  mesh->r_cut_max = mesh->r_s * props->r_cut_max_ratio;
  mesh->r_cut_min = mesh->r_s * props->r_cut_min_ratio;
506
507
508
509
510
511
512
513
514
515

  /* Allocate the memory for the combined density and potential array */
  mesh->potential = (double*)fftw_malloc(sizeof(double) * N * N * N);
  if (mesh->potential == NULL)
    error("Error allocating memory for the long-range gravity mesh.");
#else
  error("No FFTW library found. Cannot compute periodic long-range forces.");
#endif
}

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/**
 * @brief Initialises the mesh for the case where we don't do mesh gravity
 * calculations
 *
 * Crucially this set the 'periodic' propoerty to 0 and all the relevant values
 * to a
 * state where all calculations will default to pure non-periodic Newtonian.
 *
 * @param mesh The #pm_mesh to initialise.
 * @param dim The (comoving) side-lengths of the simulation volume.
 */
void pm_mesh_init_no_mesh(struct pm_mesh* mesh, double dim[3]) {

  bzero(mesh, sizeof(struct pm_mesh));

  /* Fill in non-zero properties */
  mesh->dim[0] = dim[0];
  mesh->dim[1] = dim[1];
  mesh->dim[2] = dim[2];
  mesh->r_s = FLT_MAX;
  mesh->r_cut_min = FLT_MAX;
  mesh->r_cut_max = FLT_MAX;
}

540
541
542
543
544
545
546
547
/**
 * @brief Frees the memory allocated for the long-range mesh.
 */
void pm_mesh_clean(struct pm_mesh* mesh) {

  if (mesh->potential) free(mesh->potential);
  mesh->potential = 0;
}
548
549
550
551

/**
 * @brief Write a #pm_mesh struct to the given FILE as a stream of bytes.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
552
 * @param mesh the struct
553
554
555
556
557
558
559
560
561
562
563
 * @param stream the file stream
 */
void pm_mesh_struct_dump(const struct pm_mesh* mesh, FILE* stream) {
  restart_write_blocks((void*)mesh, sizeof(struct pm_mesh), 1, stream,
                       "gravity", "gravity props");
}

/**
 * @brief Restore a #pm_mesh struct from the given FILE as a stream of
 * bytes.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
564
 * @param mesh the struct
565
566
567
568
569
570
 * @param stream the file stream
 */
void pm_mesh_struct_restore(struct pm_mesh* mesh, FILE* stream) {

  restart_read_blocks((void*)mesh, sizeof(struct pm_mesh), 1, stream, NULL,
                      "gravity props");
571
#ifdef HAVE_FFTW
572
573
574
575
576
577
578
579
580
581
582
  const int N = mesh->N;

  /* Allocate the memory for the combined density and potential array */
  mesh->potential = (double*)fftw_malloc(sizeof(double) * N * N * N);
  if (mesh->potential == NULL)
    error("Error allocating memory for the long-range gravity mesh.");

#else
  error("No FFTW library found. Cannot compute periodic long-range forces.");
#endif
}