space.c 31 KB
Newer Older
Pedro Gonnet's avatar
Pedro Gonnet committed
1
/*******************************************************************************
2
 * This file is part of SWIFT.
Pedro Gonnet's avatar
Pedro Gonnet committed
3
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
18
19
20
21
22
23
24
25
26
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
28

29
30
/* MPI headers. */
#ifdef WITH_MPI
31
#include <mpi.h>
32
33
#endif

34
35
36
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
37
/* Local headers. */
38
#include "atomic.h"
39
#include "engine.h"
40
#include "error.h"
41
42
43
#include "kernel.h"
#include "lock.h"
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
44
45
46

/* Split size. */
int space_splitsize = space_splitsize_default;
47
int space_subsize = space_subsize_default;
48
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
49
50
51

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

80
81
82
83
84
85
86
87
88
89
90
91
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
127

128
/**
129
 * @brief Recursively dismantle a cell tree.
130
131
 *
 */
132
133
134
135
136
137
138
139
140
141
142
143
144
145

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

146
/**
147
 * @brief Re-build the cell grid.
148
 *
149
150
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
151
 */
152
153
154
155
156
157
158
159
160
161
162
163
164

void space_regrid(struct space *s, double cell_max) {

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
  // ticks tic;

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
165
    }
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
      error("Failed to aggreggate the rebuild flag accross nodes.");
    h_max = buff;
  }
#endif
  message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
252
        }
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    /* Be verbose about the change. */
    message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1], cdim[2]);
    fflush(stdout);

  } /* re-build upper-level cells? */
  // message( "rebuilding upper-level cells took %.3f ms." , (double)(getticks()
  // - tic) / CPU_TPS * 1000 );

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
      s->cells[k].kick1 = NULL;
      s->cells[k].kick2 = NULL;
      s->cells[k].super = &s->cells[k];
281
    }
282
283
284
    s->maxdepth = 0;
  }
}
285
286
287
288
289
290
291
292

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
 *
 */
293
294
295

void space_rebuild(struct space *s, double cell_max) {

296
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
297
298
299
300
  struct cell *restrict c, *restrict cells;
  struct part *restrict finger, *restrict p, *parts = s->parts;
  struct xpart *xfinger, *xparts = s->xparts;
  struct gpart *gp, *gparts = s->gparts, *gfinger;
301
  int *ind;
302
303
304
305
306
307
308
309
310
311
312
313
  double ih[3], dim[3];
  // ticks tic;

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
  space_regrid(s, cell_max);
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
314
315
  const int ind_size = s->size_parts;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
316
317
318
319
320
321
322
323
324
325
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
326
  for (k = 0; k < nr_parts; k++) {
327
328
329
330
331
332
    p = &parts[k];
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
333
    ind[k] =
334
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
335
    cells[ind[k]].count++;
336
337
338
339
340
341
342
  }
// message( "getting particle indices took %.3f ms." , (double)(getticks() -
// tic) / CPU_TPS * 1000 );

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
343
344
345
346
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
347
      struct part tp = parts[k];
348
349
      parts[k] = parts[nr_parts];
      parts[nr_parts] = tp;
350
      struct xpart txp = xparts[k];
351
352
353
354
355
      xparts[k] = xparts[nr_parts];
      xparts[nr_parts] = txp;
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
356
357
    }

358
359
360
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
361
362
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
363
364
365
366
  parts = s->parts;
  xparts = s->xparts;

  /* Re-allocate the index array if needed.. */
367
368
369
  if (s->nr_parts > ind_size) {
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
370
      error("Failed to allocate temporary particle indices.");
371
372
373
    memcpy(ind_new, ind, sizeof(int) * nr_parts);
    free(ind);
    ind = ind_new;
374
375
376
  }

  /* Assign each particle to its cell. */
377
  for (k = nr_parts; k < s->nr_parts; k++) {
378
    p = &parts[k];
379
    ind[k] =
380
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
381
382
383
384
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
385
  }
386
  nr_parts = s->nr_parts;
387
388
389
390
#endif

  /* Sort the parts according to their cells. */
  // tic = getticks();
391
  parts_sort(parts, xparts, ind, nr_parts, 0, s->nr_cells - 1);
392
393
394
395
  // message( "parts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the gparts. */
396
  for (k = 0; k < nr_parts; k++)
397
398
399
400
    if (parts[k].gpart != NULL) parts[k].gpart->part = &parts[k];

  /* Verify sort. */
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
401
      if ( ind[k-1] > ind[k] ) {
402
403
          error( "Sort failed!" );
          }
404
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
405
406
407
408
409
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
410
  free(ind);
411
412
413

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
414
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
415
416
417
418
419
420
421
422
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
    gp = &gparts[k];
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
423
    ind[k] =
424
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
425
    cells[ind[k]].gcount++;
426
427
428
429
430
431
432
433
  }
  // message( "getting particle indices took %.3f ms." , (double)(getticks() -
  // tic) / CPU_TPS * 1000 );

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
  // tic = getticks();
434
  gparts_sort(gparts, ind, nr_gparts, 0, s->nr_cells - 1);
435
436
437
438
439
440
441
442
  // message( "gparts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
    if (gparts[k].id > 0) gparts[k].part->gpart = &gparts[k];

  /* We no longer need the indices as of here. */
443
  free(ind);
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

  /* Hook the cells up to the parts. */
  // tic = getticks();
  finger = parts;
  xfinger = xparts;
  gfinger = gparts;
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
  // message( "hooking up cells took %.3f ms." , (double)(getticks() - tic) /
  // CPU_TPS * 1000 );

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
  // tic = getticks();
465
466
  for (k = 0; k < s->nr_cells; k++) space_split(s, &cells[k]);

467
468
469
  // message( "space_split took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );
}
470

471
/**
472
473
 * @brief Sort the particles and condensed particles according to the given
 *indices.
474
475
 *
 * @param parts The list of #part
476
 * @param xparts The list of reduced particles
477
478
479
480
481
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 */
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
void parts_sort(struct part *parts, struct xpart *xparts, int *ind, int N,
                int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct part temp_p;
  struct xpart temp_xp;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

518
519
  /* Main loop. */
  while (waiting > 0) {
520

521
522
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
523

524
525
526
527
528
529
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;
530

531
532
    /* Loop over sub-intervals. */
    while (1) {
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = parts[ii];
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
          temp_xp = xparts[ii];
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
      /* Verify sort. */
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if (waiting++ >= qstack_size) error("Qstack overflow.");
        }
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
603

604
605
606
607
608
609
610
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
611

612
613
614
615
616
    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

  /* Verify sort. */
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}

void gparts_sort(struct gpart *gparts, int *ind, int N, int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

661
662
  /* Main loop. */
  while (waiting > 0) {
663

664
665
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
666

667
668
669
670
671
672
673
674
675
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
676

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
      /* Verify sort. */
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
723

724
725
726
727
728
729
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
757
758
759
760
761
762
763
764
765
766

  /* Verify sort. */
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
767

Pedro Gonnet's avatar
Pedro Gonnet committed
768
/**
769
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
770
771
 */

772
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
773

774
775
776
777
778
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
779
780
781
782
783

/**
 * @brief Map a function to all particles in a aspace.
 *
 * @param s The #space we are working in.
784
785
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
786
787
 */

788
789
790
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
  int cid = 0;

  void rec_map(struct cell * c) {

    int k;

    /* No progeny? */
    if (!c->split)
      for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);

    /* Otherwise, recurse. */
    else
      for (k = 0; k < 8; k++)
        if (c->progeny[k] != NULL) rec_map(c->progeny[k]);
  }

  /* Call the recursive function on all higher-level cells. */
809
  for (cid = 0; cid < s->nr_cells; cid++) rec_map(&s->cells[cid]);
810
}
Pedro Gonnet's avatar
Pedro Gonnet committed
811
812
813
814
815

/**
 * @brief Map a function to all particles in a aspace.
 *
 * @param s The #space we are working in.
816
 * @param full Map to all cells, including cells with sub-cells.
817
818
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
819
 */
820

821
822
void space_map_cells_post(struct space *s, int full,
                          void (*fun)(struct cell *c, void *data), void *data) {
823

824
  int cid = 0;
825

826
827
828
  void rec_map(struct cell * c) {

    int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
829

830
831
832
833
834
835
836
837
838
839
    /* Recurse. */
    if (c->split)
      for (k = 0; k < 8; k++)
        if (c->progeny[k] != NULL) rec_map(c->progeny[k]);

    /* No progeny? */
    if (full || !c->split) fun(c, data);
  }

  /* Call the recursive function on all higher-level cells. */
840
  for (cid = 0; cid < s->nr_cells; cid++) rec_map(&s->cells[cid]);
841
}
Pedro Gonnet's avatar
Pedro Gonnet committed
842

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
void space_map_cells_pre(struct space *s, int full,
                         void (*fun)(struct cell *c, void *data), void *data) {

  int cid = 0;

  void rec_map(struct cell * c) {

    int k;

    /* No progeny? */
    if (full || !c->split) fun(c, data);

    /* Recurse. */
    if (c->split)
      for (k = 0; k < 8; k++)
        if (c->progeny[k] != NULL) rec_map(c->progeny[k]);
  }

  /* Call the recursive function on all higher-level cells. */
862
  for (cid = 0; cid < s->nr_cells; cid++) rec_map(&s->cells[cid]);
863
}
Pedro Gonnet's avatar
Pedro Gonnet committed
864
865
866
867
868
869
870

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
871

872
873
874
void space_split(struct space *s, struct cell *c) {

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
875
  float h, h_max = 0.0f, dt, dt_min = c->parts[0].dt, dt_max = dt_min;
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
        space_split(s, c->progeny[k]);
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
        dt_min = fminf(dt_min, c->progeny[k]->dt_min);
        dt_max = fmaxf(dt_max, c->progeny[k]->dt_max);
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
    c->dt_min = dt_min;
    c->dt_max = dt_max;
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      dt = p->dt;
      h = p->h;
      if (h > h_max) h_max = h;
      if (dt < dt_min) dt_min = dt;
      if (dt > dt_max) dt_max = dt;
959
    }
960
961
962
963
    c->h_max = h_max;
    c->dt_min = dt_min;
    c->dt_max = dt_max;
  }
964

965
966
967
  /* Set ownership accorind to the start of the parts array. */
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
968

Pedro Gonnet's avatar
Pedro Gonnet committed
969
970
971
972
973
974
975
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
998
999
1000
1001
1002
1003
1004

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1005
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1006

1007
1008
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1028

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1040
1041
1042
1043

/**
 * @brief Split the space into cells given the array of particles.
 *
1044
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1045
1046
1047
1048
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1049
 * @param h_max The maximal interaction radius.
Pedro Gonnet's avatar
Pedro Gonnet committed
1050
1051
 *
 * Makes a grid of edge length > r_max and fills the particles
1052
 * into the respective cells. Cells containing more than #space_splitsize
Pedro Gonnet's avatar
Pedro Gonnet committed
1053
1054
1055
1056
 * parts with a cutoff below half the cell width are then split
 * recursively.
 */

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
void space_init(struct space *s, double dim[3], struct part *parts, int N,
                int periodic, double h_max) {

  /* Store eveything in the space. */
  s->dim[0] = dim[0];
  s->dim[1] = dim[1];
  s->dim[2] = dim[2];
  s->periodic = periodic;
  s->nr_parts = N;
  s->size_parts = N;
  s->parts = parts;
  s->cell_min = h_max;
  s->nr_queues = 1;
  s->size_parts_foreign = 0;

  /* Check that all the particle positions are reasonable, wrap if periodic. */
  if (periodic) {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++) {
        while (parts[k].x[j] < 0) parts[k].x[j] += dim[j];
        while (parts[k].x[j] >= dim[j]) parts[k].x[j] -= dim[j];
1078
      }
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
  } else {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++)
        if (parts[k].x[j] < 0 || parts[k].x[j] >= dim[j])
          error("Not all particles are within the specified domain.");
  }

  /* Allocate the xtra parts array. */
  if (posix_memalign((void *)&s->xparts, part_align,
                     N * sizeof(struct xpart)) != 0)
    error("Failed to allocate xparts.");
  bzero(s->xparts, N * sizeof(struct xpart));

  /* Initialize the velocities and internal energies. */
  for (int k = 0; k < N; k++) {
    struct part *p = &parts[k];
    struct xpart *xp = &s->xparts[k];
    xp->v_hdt[0] = p->v[0];
    xp->v_hdt[1] = p->v[1];
    xp->v_hdt[2] = p->v[2];
    xp->u_hdt = p->u;
  }

  /* For now, clone the parts to make gparts. */
  if (posix_memalign((void *)&s->gparts, part_align,
                     N * sizeof(struct gpart)) != 0)
    error("Failed to allocate gparts.");
  bzero(s->gparts, N * sizeof(struct gpart));
  /* for ( int k = 0 ; k < N ; k++ ) {
      s->gparts[k].x[0] = s->parts[k].x[0];
      s->gparts[k].x[1] = s->parts[k].x[1];
      s->gparts[k].x[2] = s->parts[k].x[2];
      s->gparts[k].v[0] = s->parts[k].v[0];
      s->gparts[k].v[1] = s->parts[k].v[1];
      s->gparts[k].v[2] = s->parts[k].v[2];
      s->gparts[k].mass = s->parts[k].mass;
      s->gparts[k].dt = s->parts[k].dt;
      s->gparts[k].id = s->parts[k].id;
      s->gparts[k].part = &s->parts[k];
      s->parts[k].gpart = &s->gparts[k];
1119
      }
1120
1121
1122
1123
1124
1125
  s->nr_gparts = s->nr_parts; */
  s->nr_gparts = 0;
  s->size_gparts = s->size_parts;

  /* Init the space lock. */
  if (lock_init(&s->lock) != 0) error("Failed to create space spin-lock.");
Pedro Gonnet's avatar
Pedro Gonnet committed
1126

1127
1128
1129
  /* Build the cells and the tasks. */
  space_regrid(s, h_max);
}