cell.c 194 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "black_holes.h"
53
#include "chemistry.h"
54
#include "drift.h"
55
#include "engine.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
56
#include "entropy_floor.h"
57
#include "error.h"
58
#include "feedback.h"
59
#include "gravity.h"
60
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
61
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
62
#include "memswap.h"
63
#include "minmax.h"
64
#include "pressure_floor.h"
65
#include "scheduler.h"
66
#include "space.h"
67
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
68
#include "star_formation.h"
Loic Hausammann's avatar
Loic Hausammann committed
69
#include "stars.h"
70
#include "task_order.h"
71
#include "timers.h"
72
#include "tools.h"
73
#include "tracers.h"
74

75
76
extern int engine_star_resort_task_depth;

77
78
79
/* Global variables. */
int cell_next_tag = 0;

Pedro Gonnet's avatar
Pedro Gonnet committed
80
/** List of cell pairs for sub-cell recursion. For any sid, the entries in
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
 * this array contain the number of sub-cell pairs and the indices and sid
 * of the sub-cell pairs themselves. */
struct cell_split_pair cell_split_pairs[13] = {
    {1, /* (  1 ,  1 ,  1 ) */
     {{7, 0, 0}}},

    {4, /* (  1 ,  1 ,  0 ) */
     {{6, 0, 1}, {7, 1, 1}, {6, 1, 0}, {7, 0, 2}}},

    {1, /* (  1 ,  1 , -1 ) */
     {{6, 1, 2}}},

    {4, /* (  1 ,  0 ,  1 ) */
     {{5, 0, 3}, {7, 2, 3}, {5, 2, 0}, {7, 0, 6}}},

    {16, /* (  1 ,  0 ,  0 ) */
     {{4, 0, 4},
      {5, 0, 5},
      {6, 0, 7},
      {7, 0, 8},
      {4, 1, 3},
      {5, 1, 4},
      {6, 1, 6},
      {7, 1, 7},
      {4, 2, 1},
      {5, 2, 2},
      {6, 2, 4},
      {7, 2, 5},
      {4, 3, 0},
      {5, 3, 1},
      {6, 3, 3},
      {7, 3, 4}}},

    {4, /* (  1 ,  0 , -1 ) */
     {{4, 1, 5}, {6, 3, 5}, {4, 3, 2}, {6, 1, 8}}},

    {1, /* (  1 , -1 ,  1 ) */
     {{5, 2, 6}}},

    {4, /* (  1 , -1 ,  0 ) */
     {{4, 3, 6}, {5, 2, 8}, {4, 2, 7}, {5, 3, 7}}},

    {1, /* (  1 , -1 , -1 ) */
     {{4, 3, 8}}},

    {4, /* (  0 ,  1 ,  1 ) */
     {{3, 0, 9}, {7, 4, 9}, {3, 4, 0}, {7, 0, 8}}},

    {16, /* (  0 ,  1 ,  0 ) */
     {{2, 0, 10},
      {3, 0, 11},
      {6, 0, 7},
      {7, 0, 6},
      {2, 1, 9},
      {3, 1, 10},
      {6, 1, 8},
      {7, 1, 7},
      {2, 4, 1},
      {3, 4, 2},
      {6, 4, 10},
      {7, 4, 11},
      {2, 5, 0},
      {3, 5, 1},
      {6, 5, 9},
      {7, 5, 10}}},

    {4, /* (  0 ,  1 , -1 ) */
     {{2, 1, 11}, {6, 5, 11}, {2, 5, 2}, {6, 1, 6}}},

    {16, /* (  0 ,  0 ,  1 ) */
     {{1, 0, 12},
      {3, 0, 11},
      {5, 0, 5},
      {7, 0, 2},
      {1, 2, 9},
      {3, 2, 12},
      {5, 2, 8},
      {7, 2, 5},
      {1, 4, 3},
      {3, 4, 6},
      {5, 4, 12},
      {7, 4, 11},
      {1, 6, 0},
      {3, 6, 3},
      {5, 6, 9},
      {7, 6, 12}}}};

168
169
170
171
172
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
173
int cell_getsize(struct cell *c) {
Pedro Gonnet's avatar
Pedro Gonnet committed
174
175
  /* Number of cells in this subtree. */
  int count = 1;
176

177
178
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
179
    for (int k = 0; k < 8; k++)
180
181
182
183
184
185
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

186
/**
187
 * @brief Link the cells recursively to the given #part array.
188
189
190
191
192
193
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
194
int cell_link_parts(struct cell *c, struct part *parts) {
195
#ifdef SWIFT_DEBUG_CHECKS
196
197
198
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

199
  if (c->hydro.parts != NULL)
200
201
202
    error("Linking parts into a cell that was already linked");
#endif

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  c->hydro.parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->hydro.count;
}

/**
219
 * @brief Link the cells recursively to the given #gpart array.
220
221
 *
 * @param c The #cell.
222
 * @param gparts The #gpart array.
223
224
225
 *
 * @return The number of particles linked.
 */
226
int cell_link_gparts(struct cell *c, struct gpart *gparts) {
227
228
229
230
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

231
  if (c->grav.parts != NULL)
232
    error("Linking gparts into a cell that was already linked");
233
#endif
234

235
  c->grav.parts = gparts;
236
237
238
239
240
241
242
243
244
245
246

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
247
  return c->grav.count;
248
249
}

250
251
252
253
254
255
256
257
258
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {
259
260
261
262
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

263
  if (c->stars.parts != NULL)
264
265
266
    error("Linking sparts into a cell that was already linked");
#endif

267
  c->stars.parts = sparts;
268
  c->stars.parts_rebuild = sparts;
269
270
271
272
273
274
275
276
277
278
279

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
280
  return c->stars.count;
281
282
}

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/**
 * @brief Link the cells recursively to the given #bpart array.
 *
 * @param c The #cell.
 * @param bparts The #bpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_bparts(struct cell *c, struct bpart *bparts) {

#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");

  if (c->black_holes.parts != NULL)
    error("Linking bparts into a cell that was already linked");
#endif

  c->black_holes.parts = bparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_bparts(c->progeny[k], &bparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->black_holes.count;
}

316
317
318
319
320
321
322
323
324
325
/**
 * @brief Recurse down foreign cells until reaching one with hydro
 * tasks; then trigger the linking of the #part array from that
 * level.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
326
int cell_link_foreign_parts(struct cell *c, struct part *parts) {
327
328
#ifdef WITH_MPI

329
330
331
332
333
334
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
335
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    /* Recursively attach the parts */
    const int counts = cell_link_parts(c, parts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->hydro.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_parts(c->progeny[k], &parts[count]);
      }
    }
354
355
356
    return count;
  } else {
    return 0;
357
  }
358
359
360
361

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
362
363
}

364
365
366
367
368
369
370
371
372
373
/**
 * @brief Recurse down foreign cells until reaching one with gravity
 * tasks; then trigger the linking of the #gpart array from that
 * level.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
374
int cell_link_foreign_gparts(struct cell *c, struct gpart *gparts) {
375
376
#ifdef WITH_MPI

377
378
379
380
381
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Linking foreign particles in a local cell!");
#endif

382
383
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
384

385
    /* Recursively attach the gparts */
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    const int counts = cell_link_gparts(c, gparts);
#ifdef SWIFT_DEBUG_CHECKS
    if (counts != c->grav.count)
      error("Something is wrong with the foreign counts");
#endif
    return counts;
  }

  /* Go deeper to find the level where the tasks are */
  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) {
        count += cell_link_foreign_gparts(c->progeny[k], &gparts[count]);
      }
    }
402
403
404
    return count;
  } else {
    return 0;
405
  }
406
407
408
409

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
410
411
}

412
413
414
415
416
417
418
419
/**
 * @brief Recursively count the number of #part in foreign cells that
 * are in cells with hydro-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
420
int cell_count_parts_for_tasks(const struct cell *c) {
421
422
#ifdef WITH_MPI

423
424
425
426
427
428
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

  /* Do we have a hydro task at this level? */
429
  if (cell_get_recv(c, task_subtype_xv) != NULL) {
430
431
432
433
434
435
436
437
438
439
    return c->hydro.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_parts_for_tasks(c->progeny[k]);
      }
    }
440
441
442
    return count;
  } else {
    return 0;
443
  }
444
445
446
447

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
448
449
}

450
451
452
453
454
455
456
457
/**
 * @brief Recursively count the number of #gpart in foreign cells that
 * are in cells with gravity-related tasks.
 *
 * @param c The #cell.
 *
 * @return The number of particles linked.
 */
458
int cell_count_gparts_for_tasks(const struct cell *c) {
459
460
#ifdef WITH_MPI

461
462
463
464
465
#ifdef SWIFT_DEBUG_CHECKS
  if (c->nodeID == engine_rank)
    error("Counting foreign particles in a local cell!");
#endif

466
467
  /* Do we have a gravity task at this level? */
  if (cell_get_recv(c, task_subtype_gpart) != NULL) {
468
469
470
471
472
473
474
475
476
477
    return c->grav.count;
  }

  if (c->split) {
    int count = 0;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        count += cell_count_gparts_for_tasks(c->progeny[k]);
      }
    }
478
479
480
    return count;
  } else {
    return 0;
481
  }
482
483
484
485

#else
  error("Calling linking of foregin particles in non-MPI mode.");
#endif
486
487
}

488
489
490
491
492
493
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
494
495
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
496
497
498
 *
 * @return The number of packed cells.
 */
499
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
500
              const int with_gravity) {
501
502
#ifdef WITH_MPI

503
  /* Start by packing the data of the current cell. */
504
  pc->hydro.h_max = c->hydro.h_max;
505
  pc->stars.h_max = c->stars.h_max;
506
  pc->black_holes.h_max = c->black_holes.h_max;
507
508
509
510
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
511
  pc->stars.ti_end_min = c->stars.ti_end_min;
512
  pc->stars.ti_end_max = c->stars.ti_end_max;
513
514
  pc->black_holes.ti_end_min = c->black_holes.ti_end_min;
  pc->black_holes.ti_end_max = c->black_holes.ti_end_max;
515
516
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
517
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
518
  pc->stars.ti_old_part = c->stars.ti_old_part;
519
  pc->hydro.count = c->hydro.count;
520
521
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
522
  pc->black_holes.count = c->black_holes.count;
523
  pc->maxdepth = c->maxdepth;
524

525
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
526
  if (with_gravity) {
527
    const struct gravity_tensors *mp = c->grav.multipole;
528

529
530
531
532
533
534
535
536
537
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
538
539
  }

540
541
542
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
543
544

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
545
546
  int count = 1;
  for (int k = 0; k < 8; k++)
547
548
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
549
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
550
    } else {
551
      pc->progeny[k] = -1;
552
    }
553
554

  /* Return the number of packed cells used. */
555
  c->mpi.pcell_size = count;
556
  return count;
557
558
559
560
561

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
562
563
}

564
565
566
567
568
569
570
571
572
573
574
575
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {
#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
576
  tags[0] = c->mpi.tag;
577
578
579
580
581
582
583
584

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
585
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
586
587
588
589
590
591
592
593
594
595
596
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
void cell_pack_part_swallow(const struct cell *c,
                            struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  const struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    data[i] = parts[i].black_holes_data;
  }
}

void cell_unpack_part_swallow(struct cell *c,
                              const struct black_holes_part_data *data) {

  const size_t count = c->hydro.count;
  struct part *parts = c->hydro.parts;

  for (size_t i = 0; i < count; ++i) {
    parts[i].black_holes_data = data[i];
  }
}

619
620
621
622
623
624
625
void cell_pack_bpart_swallow(const struct cell *c,
                             struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  const struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
626
    data[i] = bparts[i].merger_data;
627
628
629
630
631
632
633
634
635
636
637
638
639
640
  }
}

void cell_unpack_bpart_swallow(struct cell *c,
                               const struct black_holes_bpart_data *data) {

  const size_t count = c->black_holes.count;
  struct bpart *bparts = c->black_holes.parts;

  for (size_t i = 0; i < count; ++i) {
    bparts[i].merger_data = data[i];
  }
}

641
642
643
644
645
646
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
647
648
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
649
650
651
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
652
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
653
                struct space *restrict s, const int with_gravity) {
654
655
656
#ifdef WITH_MPI

  /* Unpack the current pcell. */
657
  c->hydro.h_max = pc->hydro.h_max;
658
  c->stars.h_max = pc->stars.h_max;
659
  c->black_holes.h_max = pc->black_holes.h_max;
660
661
662
663
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
664
  c->stars.ti_end_min = pc->stars.ti_end_min;
665
  c->stars.ti_end_max = pc->stars.ti_end_max;
666
667
  c->black_holes.ti_end_min = pc->black_holes.ti_end_min;
  c->black_holes.ti_end_max = pc->black_holes.ti_end_max;
668
669
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
670
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
671
  c->stars.ti_old_part = pc->stars.ti_old_part;
672
  c->black_holes.ti_old_part = pc->black_holes.ti_old_part;
673
  c->hydro.count = pc->hydro.count;
674
675
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
676
  c->black_holes.count = pc->black_holes.count;
677
678
  c->maxdepth = pc->maxdepth;

679
680
681
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
682

683
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
684
  if (with_gravity) {
685
    struct gravity_tensors *mp = c->grav.multipole;
686

687
688
689
690
691
692
693
694
695
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
696
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
697

698
699
700
701
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
702
  c->split = 0;
703
704
705
706
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
707
      temp->hydro.count = 0;
708
709
      temp->grav.count = 0;
      temp->stars.count = 0;
710
711
712
713
714
715
716
717
718
719
720
721
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
722
      temp->hydro.dx_max_part = 0.f;
723
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
724
      temp->stars.dx_max_part = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
725
      temp->stars.dx_max_sort = 0.f;
726
      temp->black_holes.dx_max_part = 0.f;
727
728
729
730
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
731
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
732
733
734
    }

  /* Return the total number of unpacked cells. */
735
  c->mpi.pcell_size = count;
736
737
738
739
740
741
742
743
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

744
745
746
747
748
749
750
751
752
753
754
755
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {
#ifdef WITH_MPI

  /* Unpack the current pcell. */
756
  c->mpi.tag = tags[0];
757
758
759
760
761
762
763
764
765
766
767

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
768
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
769
770
771
772
773
774
775
776
777
778
779
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

780
781
782
783
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
784
 * @param pcells (output) The end-of-timestep information we pack into
785
786
787
 *
 * @return The number of packed cells.
 */
788
789
int cell_pack_end_step_hydro(struct cell *restrict c,
                             struct pcell_step_hydro *restrict pcells) {
790
791
#ifdef WITH_MPI

792
  /* Pack this cell's data. */
793
794
795
  pcells[0].ti_end_min = c->hydro.ti_end_min;
  pcells[0].ti_end_max = c->hydro.ti_end_max;
  pcells[0].dx_max_part = c->hydro.dx_max_part;
796

797
798
799
800
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
801
      count += cell_pack_end_step_hydro(c->progeny[k], &pcells[count]);
802
803
804
805
    }

  /* Return the number of packed values. */
  return count;
806
807
808
809
810

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
811
812
}

813
814
815
816
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
817
 * @param pcells The end-of-timestep information to unpack
818
819
820
 *
 * @return The number of cells created.
 */
821
822
int cell_unpack_end_step_hydro(struct cell *restrict c,
                               struct pcell_step_hydro *restrict pcells) {
823
824
#ifdef WITH_MPI

825
  /* Unpack this cell's data. */
826
827
828
  c->hydro.ti_end_min = pcells[0].ti_end_min;
  c->hydro.ti_end_max = pcells[0].ti_end_max;
  c->hydro.dx_max_part = pcells[0].dx_max_part;
829

830
831
832
833
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
      count += cell_unpack_end_step_hydro(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_grav(struct cell *restrict c,
                            struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->grav.ti_end_min;
  pcells[0].ti_end_max = c->grav.ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_grav(struct cell *restrict c,
                              struct pcell_step_grav *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->grav.ti_end_min = pcells[0].ti_end_min;
  c->grav.ti_end_max = pcells[0].ti_end_max;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_grav(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_end_step_stars(struct cell *restrict c,
                             struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->stars.ti_end_min;
  pcells[0].ti_end_max = c->stars.ti_end_max;
  pcells[0].dx_max_part = c->stars.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_stars(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The end-of-timestep information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_end_step_stars(struct cell *restrict c,
                               struct pcell_step_stars *restrict pcells) {
#ifdef WITH_MPI

  /* Unpack this cell's data. */
  c->stars.ti_end_min = pcells[0].ti_end_min;
  c->stars.ti_end_max = pcells[0].ti_end_max;
  c->stars.dx_max_part = pcells[0].dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_end_step_stars(c->progeny[k], &pcells[count]);
965
966
967
    }

  /* Return the number of packed values. */
968
  return count;
969
970
971
972
973

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
974
}
975

976
977
978
979
980
981
982
983
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pcells (output) The end-of-timestep information we pack into
 *
 * @return The number of packed cells.
 */
984
985
int cell_pack_end_step_black_holes(
    struct cell *restrict c, struct pcell_step_black_holes *restrict pcells) {
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0].ti_end_min = c->black_holes.ti_end_min;
  pcells[0].ti_end_max = c->black_holes.ti_end_max;
  pcells[0].dx_max_part = c->black_holes.dx_max_part;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_end_step_black_holes(c->progeny[k], &pcells[count]);
    }