cell.c 98.3 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
64
#include "timers.h"
65
#include "tools.h"
66

67
68
69
/* Global variables. */
int cell_next_tag = 0;

70
71
72
73
74
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
75
int cell_getsize(struct cell *c) {
76

Pedro Gonnet's avatar
Pedro Gonnet committed
77
78
  /* Number of cells in this subtree. */
  int count = 1;
79

80
81
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
82
    for (int k = 0; k < 8; k++)
83
84
85
86
87
88
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

89
/**
90
 * @brief Link the cells recursively to the given #part array.
91
92
93
94
95
96
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
97
int cell_link_parts(struct cell *c, struct part *parts) {
98

99
100
101
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
102
103
104
105
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
106
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
107
108
    }
  }
109

110
  /* Return the total number of linked particles. */
111
112
  return c->count;
}
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

164
165
166
167
168
169
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
170
171
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
172
173
174
 *
 * @return The number of packed cells.
 */
175
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
176
              const int with_gravity) {
177

178
179
#ifdef WITH_MPI

180
181
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
182
183
184
185
  pc->ti_hydro_end_min = c->ti_hydro_end_min;
  pc->ti_hydro_end_max = c->ti_hydro_end_max;
  pc->ti_gravity_end_min = c->ti_gravity_end_min;
  pc->ti_gravity_end_max = c->ti_gravity_end_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
186
187
188
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
  pc->ti_old_multipole = c->ti_old_multipole;
189
  pc->count = c->count;
190
  pc->gcount = c->gcount;
191
  pc->scount = c->scount;
192

193
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
194
  if (with_gravity) {
195
196
197
198
199
200
201
202
203
204
205
206
207
    const struct gravity_tensors *mp = c->multipole;

    pc->m_pole = mp->m_pole;
    pc->CoM[0] = mp->CoM[0];
    pc->CoM[1] = mp->CoM[1];
    pc->CoM[2] = mp->CoM[2];
    pc->CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->r_max = mp->r_max;
    pc->r_max_rebuild = mp->r_max_rebuild;
  }

208
209
210
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
211
212

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
213
214
  int count = 1;
  for (int k = 0; k < 8; k++)
215
216
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
217
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
218
    } else {
219
      pc->progeny[k] = -1;
220
    }
221
222

  /* Return the number of packed cells used. */
223
224
  c->pcell_size = count;
  return count;
225
226
227
228
229

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
230
231
}

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
  tags[0] = c->tag;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
  if (c->pcell_size != count) error("Inconsistent tag and pcell count!");
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

266
267
268
269
270
271
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
272
273
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
274
275
276
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
277
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
278
                struct space *restrict s, const int with_gravity) {
279
280
281
282
283

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
284
285
286
287
  c->ti_hydro_end_min = pc->ti_hydro_end_min;
  c->ti_hydro_end_max = pc->ti_hydro_end_max;
  c->ti_gravity_end_min = pc->ti_gravity_end_min;
  c->ti_gravity_end_max = pc->ti_gravity_end_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
290
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
  c->ti_old_multipole = pc->ti_old_multipole;
291
292
293
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
294
295
296
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
297

298
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
299
  if (with_gravity) {
300
301
302
303
304
305
306
307
308
309
310
311
312

    struct gravity_tensors *mp = c->multipole;

    mp->m_pole = pc->m_pole;
    mp->CoM[0] = pc->CoM[0];
    mp->CoM[1] = pc->CoM[1];
    mp->CoM[2] = pc->CoM[2];
    mp->CoM_rebuild[0] = pc->CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->CoM_rebuild[2];
    mp->r_max = pc->r_max;
    mp->r_max_rebuild = pc->r_max_rebuild;
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
343
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
344
345
346
347
348
349
350
351
352
353
354
355
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->tag = tags[0];

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
  if (c->pcell_size != count) error("Inconsistent tag and pcell count!");
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

393
394
395
396
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
397
 * @param pcells (output) The end-of-timestep information we pack into
398
399
400
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
401
402
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
403

404
405
#ifdef WITH_MPI

406
  /* Pack this cell's data. */
407
  pcells[0].ti_hydro_end_min = c->ti_hydro_end_min;
408
  pcells[0].ti_hydro_end_max = c->ti_hydro_end_max;
409
  pcells[0].ti_gravity_end_min = c->ti_gravity_end_min;
410
  pcells[0].ti_gravity_end_max = c->ti_gravity_end_max;
411
  pcells[0].dx_max_part = c->dx_max_part;
412

413
414
415
416
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
417
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
418
419
420
421
    }

  /* Return the number of packed values. */
  return count;
422
423
424
425
426

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
427
428
}

429
430
431
432
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
433
 * @param pcells The end-of-timestep information to unpack
434
435
436
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
437
438
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
439

440
441
#ifdef WITH_MPI

442
  /* Unpack this cell's data. */
443
  c->ti_hydro_end_min = pcells[0].ti_hydro_end_min;
444
  c->ti_hydro_end_max = pcells[0].ti_hydro_end_max;
445
  c->ti_gravity_end_min = pcells[0].ti_gravity_end_min;
446
  c->ti_gravity_end_max = pcells[0].ti_gravity_end_max;
447
  c->dx_max_part = pcells[0].dx_max_part;
448

449
450
451
452
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
453
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
454
455
456
    }

  /* Return the number of packed values. */
457
  return count;
458
459
460
461
462

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
463
}
464

465
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
466
467
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
468
469
470
471
472
473
474
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
475
                         struct gravity_tensors *restrict pcells) {
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0] = *c->multipole;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
507
                           struct gravity_tensors *restrict pcells) {
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  *c->multipole = pcells[0];

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

530
/**
531
 * @brief Lock a cell for access to its array of #part and hold its parents.
532
533
 *
 * @param c The #cell.
534
 * @return 0 on success, 1 on failure
535
 */
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
558
  struct cell *finger;
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
581
582
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
583
      atomic_dec(&finger2->hold);
584
585
586
587
588
589
590
591
592
593

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

594
595
596
597
598
599
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
622
  struct cell *finger;
623
624
625
626
627
628
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
629
    atomic_inc(&finger->ghold);
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
645
646
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
647
      atomic_dec(&finger2->ghold);
648
649
650
651
652
653
654
655
656

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

786
/**
787
 * @brief Unlock a cell's parents for access to #part array.
788
789
790
 *
 * @param c The #cell.
 */
791
792
793
794
795
796
797
798
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
799
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
800
    atomic_dec(&finger->hold);
801
802
803
804

  TIMER_TOC(timer_locktree);
}

805
806
807
808
809
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
810
811
812
813
814
815
816
817
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
818
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
819
    atomic_dec(&finger->ghold);
820
821
822
823

  TIMER_TOC(timer_locktree);
}

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

862
863
864
865
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
866
867
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
868
869
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
870
871
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
872
873
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
874
875
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
876
 */
877
878
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
879
                struct cell_buff *gbuff) {
880

881
  const int count = c->count, gcount = c->gcount, scount = c->scount;
882
883
884
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
885
  struct spart *sparts = c->sparts;
886
887
888
889
890
891
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

892
893
894
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
895
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
896
        buff[k].x[2] != parts[k].x[2])
897
898
      error("Inconsistent buff contents.");
  }
899
900
901
902
903
904
905
906
907
908
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
909
#endif /* SWIFT_DEBUG_CHECKS */
910
911
912

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
913
914
    const int bid = (buff[k].x[0] >= pivot[0]) * 4 +
                    (buff[k].x[1] >= pivot[1]) * 2 + (buff[k].x[2] >= pivot[2]);
915
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
916
    buff[k].ind = bid;
917
  }
918

919
920
921
922
923
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
924
925
  }

926
927
928
929
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
930
      int bid = buff[k].ind;
931
932
933
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
934
        struct cell_buff temp_buff = buff[k];
935
936
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
937
          while (buff[j].ind == bid) {
938
939
940
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
941
942
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
943
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
944
945
          if (parts[j].gpart)
            parts[j].gpart->id_or_neg_offset = -(j + parts_offset);
946
          bid = temp_buff.ind;
947
948
949
        }
        parts[k] = part;
        xparts[k] = xpart;
950
        buff[k] = temp_buff;
951
952
        if (parts[k].gpart)
          parts[k].gpart->id_or_neg_offset = -(k + parts_offset);
953
      }
954
      bucket_count[bid]++;
955
956
957
958
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
959
  for (int k = 0; k < 8; k++) {
960
961
962
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
963
964
  }

965
#ifdef SWIFT_DEBUG_CHECKS
966
967
968
969
970
971
972
973
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

974
  /* Verify that _all_ the parts have been assigned to a cell. */
975
976
977
978
979
980
981
982
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
983
984

  /* Verify a few sub-cells. */
985
  for (int k = 0; k < c->progeny[0]->count; k++)
986
987
988
    if (c->progeny[0]->parts[k].x[0] >= pivot[0] ||
        c->progeny[0]->parts[k].x[1] >= pivot[1] ||
        c->progeny[0]->parts[k].x[2] >= pivot[2])
989
990
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
991
992
993
    if (c->progeny[1]->parts[k].x[0] >= pivot[0] ||
        c->progeny[1]->parts[k].x[1] >= pivot[1] ||
        c->progeny[1]->parts[k].x[2] < pivot[2])
994
995
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
996
997
998
    if (c->progeny[2]->parts[k].x[0] >= pivot[0] ||
        c->progeny[2]->parts[k].x[1] < pivot[1] ||
        c->progeny[2]->parts[k].x[2] >= pivot[2])
999
      error("Sorting failed (progeny=2).");
1000
  for (int k = 0; k < c->progeny[3]->count; k++)
1001
1002
1003
    if (c->progeny[3]->parts[k].x[0] >= pivot[0] ||
        c->progeny[3]->parts[k].x[1] < pivot[1] ||
        c->progeny[3]->parts[k].x[2] < pivot[2])
1004
1005
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
1006
1007
1008
    if (c->progeny[4]->parts[k].x[0] < pivot[0] ||
        c->progeny[4]->parts[k].x[1] >= pivot[1] ||
        c->progeny[4]->parts[k].x[2] >= pivot[2])
1009
1010
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
1011
1012
1013
    if (c->progeny[5]->parts[k].x[0] < pivot[0] ||
        c->progeny[5]->parts[k].x[1] >= pivot[1] ||
        c->progeny[5]->parts[k].x[2] < pivot[2])
1014
1015
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
1016
1017
1018
    if (c->progeny[6]->parts[k].x[0] < pivot[0] ||
        c->progeny[6]->parts[k].x[1] < pivot[1] ||
        c->progeny[6]->parts[k].x[2] >= pivot[2])
1019
1020
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
1021
1022
1023
    if (c->progeny[7]->parts[k].x[0] < pivot[0] ||
        c->progeny[7]->parts[k].x[1] < pivot[1] ||
        c->progeny[7]->parts[k].x[2] < pivot[2])
1024
      error("Sorting failed (progeny=7).");
1025
#endif
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
1061
1062
          if (sparts[j].gpart)
            sparts[j].gpart->id_or_neg_offset = -(j + sparts_offset);
1063
1064
1065
1066
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
1067
1068
        if (sparts[k].gpart)
          sparts[k].gpart->id_or_neg_offset = -(k + sparts_offset);
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Finally, do the same song and dance for the gparts. */
1081
1082
1083
1084
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
1085
1086
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
1087
    bucket_count[bid]++;
1088
    gbuff[k].ind = bid;
1089
  }
1090
1091
1092
1093
1094
1095

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
1096
1097
  }

1098
1099
1100
1101
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
1102
      int bid = gbuff[k].ind;
1103
1104
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
1105
        struct cell_buff temp_buff = gbuff[k];
1106
1107
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
1108
          while (gbuff[j].ind == bid) {
1109
1110
1111
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
1112
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
1113
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
1114
1115
1116
1117
1118
1119
1120
          if (gparts[j].type == swift_type_gas) {
            parts[-gparts[j].id_or_neg_offset - parts_offset].gpart =
                &gparts[j];
          } else if (gparts[j].type == swift_type_star) {
            sparts[-gparts[j].id_or_neg_offset - sparts_offset].gpart =
                &gparts[j];
          }
1121
          bid = temp_buff.ind;
1122
1123
        }
        gparts[k] = gpart;
1124
        gbuff[k] = temp_buff;
1125
1126
1127
1128
1129
1130
        if (gparts[k].type == swift_type_gas) {
          parts[-gparts[k].id_or_neg_offset - parts_offset].gpart = &gparts[k];
        } else if (gparts[k].type == swift_type_star) {
          sparts[-gparts[k].id_or_neg_offset - sparts_offset].gpart =
              &gparts[k];
        }
1131
      }
1132
      bucket_count[bid]++;
1133
1134
1135
1136
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1137
  for (int k = 0; k < 8; k++) {
1138
1139
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
1140
1141
  }
}
1142

1143
1144
1145
1146
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
1147
1148
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
1149
1150
 *
 * @param c The cell.
1151
 * @param treated Has the cell already been sanitized at this level ?
1152
 */
1153
void cell_sanitize(struct cell *c, int treated) {
1154
1155
1156

  const int count = c->count;
  struct part *parts = c->parts;
1157
  float h_max = 0.f;
1158

1159
1160
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
1161

1162
1163
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
1164

1165
1166
1167
1168
1169
1170
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
1171

1172
1173
  /* Recurse and gather the new h_max values */
  if (c->split) {
1174

1175
1176
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
1177

1178
1179
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
1180

1181
1182
1183
1184
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
1185
1186
  } else {

1187
1188
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
1189
  }
1190
1191
1192

  /* Record the change */
  c->h_max = h_max;
1193
1194
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1195
1196
1197
1198
1199
1200
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1201
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1202
  c->density = NULL;
1203
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1204
  c->force = NULL;
1205
  c->grav = NULL;
1206
  c->grav_mm = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1207
}
1208

1209
/**
1210
 * @brief Checks that the #part in a cell are at the
1211
 * current point in time
1212
1213
1214
1215
1216
1217
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1218
void cell_check_part_drift_point(struct cell *c, void *data) {
1219

1220
1221
#ifdef SWIFT_DEBUG_CHECKS

1222
  const integertime_t ti_drift = *(integertime_t *)data;
1223

1224
  /* Only check local cells */
1225
  if (c->nodeID != engine_rank) return;
1226

1227
1228
1229
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1230

1231
1232
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1233
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1234
            c->parts[i].ti_drift, ti_drift);
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1261

1262
1263
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1264
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1265
            c->gparts[i].ti_drift, ti_drift);
1266

1267
1268
1269
1270
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);