testRandom.c 8.82 KB
Newer Older
1 2 3
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (C) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
Folkert Nobels's avatar
Folkert Nobels committed
4
 *               2019 Folkert Nobels    (nobels@strw.leidenuniv.nl)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#include <fenv.h>

/* Local headers. */
#include "swift.h"

29 30 31
double pearsonfunc(double mean1, double mean2, double total12, double var1, double var2, int counter) {
  
  const double mean12 = total12 / (double)counter;
32
  const double correlation = (mean12 - mean1 * mean2)/ sqrt(var1 * var2);
33
  return fabs(correlation); 
34 35
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
int main(int argc, char* argv[]) {

  /* Initialize CPU frequency, this also starts time. */
  unsigned long long cpufreq = 0;
  clocks_set_cpufreq(cpufreq);

/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
  feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif

  /* Get some randomness going */
  const int seed = time(NULL);
  message("Seed = %d", seed);
  srand(seed);

  /* Time-step size */
  const int time_bin = 29;

  /* Try a few different values for the ID */
  for (int i = 0; i < 20; ++i) {

    const long long id = rand() * (1LL << 31) + rand();
    const integertime_t increment = (1LL << time_bin);
60
    const long long idoffset = id + 2;
61 62 63 64 65 66

    message("Testing id=%lld time_bin=%d", id, time_bin);

    double total = 0., total2 = 0.;
    int count = 0;

67
    /* Pearson correlation variables for different times */
68 69
    double sum_previous_current = 0.;
    double previous = 0.;
70 71 72 73 74

    /* Pearson correlation for two different IDs */
    double pearsonIDs = 0.;
    double totalID = 0.;
    double total2ID = 0.;
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    /* Pearson correlation for different processes */
    double pearson_star_sf = 0.;
    double pearson_star_se = 0.;
    double pearson_star_bh = 0.;
    double pearson_sf_se = 0.;
    double pearson_sf_bh = 0.;
    double pearson_se_bh = 0.;

    /* Calculate the mean and <x^2> for these processes */
    double total_sf = 0.;
    double total_se = 0.;
    double total_bh = 0.;

    double total2_sf = 0.;
    double total2_se = 0.;
    double total2_bh = 0.;

93 94 95 96 97 98 99 100 101 102 103 104 105
    /* Check that the numbers are uniform over the full-range of useful
     * time-steps */
    for (integertime_t ti_current = 0LL; ti_current < max_nr_timesteps;
         ti_current += increment) {

      ti_current += increment;

      const double r =
          random_unit_interval(id, ti_current, random_number_star_formation);

      total += r;
      total2 += r * r;
      count++;
106

107 108
      /* Calculate for correlation between time.
       * For this we use the pearson correlation of time i and i-1 */
109 110
      sum_previous_current += r * previous;
      previous = r;
111

112 113 114 115
      /* Calculate if there is a correlation between different ids */
      const double r_2ndid = random_unit_interval(idoffset, ti_current,
                                                  random_number_star_formation);

116 117 118 119
      /* Pearson correlation for small different IDs */
      pearsonIDs += r * r_2ndid;
      totalID += r_2ndid;
      total2ID += r_2ndid * r_2ndid;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

      /* Calculate random numbers for the different processes and check
       * that they are uncorrelated */
      
      const double r_sf = 
          random_unit_interval(id, ti_current, random_number_stellar_feedback);

      const double r_se = 
          random_unit_interval(id, ti_current, random_number_stellar_enrichment);

      const double r_bh = 
          random_unit_interval(id, ti_current, random_number_BH_feedback);

      /* Calculate the correlation between the different processes */
      total_sf += r_sf;
      total_se += r_se;
      total_bh += r_bh;

      total2_sf += r_sf * r_sf;
      total2_se += r_se * r_se;
      total2_bh += r_bh * r_bh;

      pearson_star_sf += r * r_sf;
      pearson_star_se += r * r_se;
      pearson_star_bh += r * r_bh;
      pearson_sf_se += r_sf * r_se;
      pearson_sf_bh += r_sf * r_bh;
      pearson_se_bh += r_se * r_bh;
148 149 150 151 152
    }

    const double mean = total / (double)count;
    const double var = total2 / (double)count - mean * mean;

153
    /* Pearson correlation calculation for different times */
154 155 156
    //const double mean_xy = sum_previous_current / ((double)count - 1.f);
    //const double correlation = (mean_xy - mean * mean) / var;
    const double correlation = pearsonfunc(mean,mean, sum_previous_current, var, var, count-1);
Folkert Nobels's avatar
Folkert Nobels committed
157

158
    /* Mean for different IDs */
159 160 161
    const double meanID = totalID / (double)count;
    const double varID = total2ID / (double)count - meanID * meanID;

162
    /* Pearson correlation between different IDs*/
163
    const double correlationID = pearsonfunc(mean, meanID, pearsonIDs, var, varID, count);
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    /* Mean and <x^2> for different processes */
    const double mean_sf = total_sf / (double)count;
    const double mean_se = total_se / (double)count;
    const double mean_bh = total_bh / (double)count;
    
    const double var_sf = total2_sf / (double)count - mean_sf * mean_sf;
    const double var_se = total2_se / (double)count - mean_se * mean_se;
    const double var_bh = total2_bh / (double)count - mean_bh * mean_bh;

    /* Correlation between different processes */
    const double corr_star_sf = pearsonfunc(mean,mean_sf,pearson_star_sf, var, var_sf, count);
    const double corr_star_se = pearsonfunc(mean,mean_se,pearson_star_se, var, var_se, count);
    const double corr_star_bh = pearsonfunc(mean,mean_bh,pearson_star_bh, var, var_bh, count);
    const double corr_sf_se = pearsonfunc(mean_sf,mean_se,pearson_sf_se, var_sf, var_se, count);
    const double corr_sf_bh = pearsonfunc(mean_sf,mean_bh,pearson_sf_bh, var_sf, var_bh, count);
    const double corr_se_bh = pearsonfunc(mean_se,mean_bh,pearson_se_bh, var_se, var_bh, count);
    
182 183
    /* Verify that the mean and variance match the expected values for a uniform
     * distribution */
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    const double tolmean = 2e-4;
    const double tolvar = 1e-3;
    const double tolcorr = 3e-4;

    if ((fabs(mean - 0.5) / 0.5 > tolmean) ||
        (fabs(var - 1. / 12.) / (1. / 12.) > tolvar) ||
        (correlation > tolcorr) || (correlationID > tolcorr) ||
        (fabs(meanID - 0.5) / 0.5 > tolmean) ||
        (fabs(varID - 1. / 12.) / (1. / 12.) > tolvar) || 
        (corr_star_sf > tolcorr) || (corr_star_se > tolcorr) ||
        (corr_star_bh > tolcorr) || (corr_sf_se > tolcorr) ||
        (corr_sf_bh > tolcorr) || (corr_se_bh > tolcorr) || 
        (fabs(mean_sf - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_se - 0.5) / 0.5 > tolmean) ||
        (fabs(mean_bh - 0.5) / 0.5 > tolmean) ||
        (fabs(var_sf - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_se - 1. / 12.) / (1. / 12.) > tolvar) || 
        (fabs(var_bh - 1. / 12.) / (1. / 12.) > tolvar)) {
202
      message("Test failed!");
203
      message("Global result:");
Folkert Nobels's avatar
Folkert Nobels committed
204
      message(
205 206
          "Result:    count=%d mean=%f var=%f, correlation=%f",
          count, mean, var, correlation);
Folkert Nobels's avatar
Folkert Nobels committed
207
      message(
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
          "Expected:  count=%d mean=%f var=%f, correlation=%f",
          count, 0.5f, 1. / 12., 0.);
      message("ID part");
      message("Result:     count%d mean=%f var=%f"
          " correlation=%f", count, meanID, varID, correlationID);
      message("Expected:   count%d mean=%f var=%f"
          " correlation=%f", count, .5f, 1. / 12., 0.);
      message("Different physical processes:");
      message("Means:    stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", mean, mean_sf, mean_se,
          mean_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", .5f, .5f, .5f, .5f);
      message("Var:      stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", var, var_sf, var_se,
          var_bh);
      message("Expected: stars=%f stellar feedback=%f stellar "
          " enrichement=%f black holes=%f", 1./12., 1./12., 1/12.,
          1./12.);
      message("Correlation: stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", corr_star_sf, corr_star_se,
          corr_star_bh, corr_sf_se, corr_sf_bh, corr_se_bh);
      message("Expected:    stars-sf=%f stars-se=%f stars-bh=%f"
          "sf-se=%f sf-bh=%f se-bh=%f", 0., 0., 0., 0., 0., 0.);
232 233 234 235 236 237
      return 1;
    }
  }

  return 0;
}