runner_doiact.h 114 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *               2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
5
 *
6
7
8
9
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
10
 *
11
12
13
14
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
15
 *
16
17
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
 *
19
20
21
22
23
24
25
26
 ******************************************************************************/

/* Before including this file, define FUNCTION, which is the
   name of the interaction function. This creates the interaction functions
   runner_dopair_FUNCTION, runner_dopair_FUNCTION_naive, runner_doself_FUNCTION,
   and runner_dosub_FUNCTION calling the pairwise interaction function
   runner_iact_FUNCTION. */

27
#define PASTE(x, y) x##_##y
28

29
30
31
#define _DOPAIR1_BRANCH(f) PASTE(runner_dopair1_branch, f)
#define DOPAIR1_BRANCH _DOPAIR1_BRANCH(FUNCTION)

32
#define _DOPAIR1(f) PASTE(runner_dopair1, f)
33
#define DOPAIR1 _DOPAIR1(FUNCTION)
34

35
#define _DOPAIR2(f) PASTE(runner_dopair2, f)
36
#define DOPAIR2 _DOPAIR2(FUNCTION)
37

38
#define _DOPAIR_SUBSET(f) PASTE(runner_dopair_subset, f)
39
#define DOPAIR_SUBSET _DOPAIR_SUBSET(FUNCTION)
40

41
42
43
#define _DOPAIR_SUBSET_NOSORT(f) PASTE(runner_dopair_subset_nosort, f)
#define DOPAIR_SUBSET_NOSORT _DOPAIR_SUBSET_NOSORT(FUNCTION)

44
#define _DOPAIR_SUBSET_NAIVE(f) PASTE(runner_dopair_subset_naive, f)
Pedro Gonnet's avatar
Pedro Gonnet committed
45
46
#define DOPAIR_SUBSET_NAIVE _DOPAIR_SUBSET_NAIVE(FUNCTION)

47
48
49
50
51
#define _DOPAIR1_NAIVE(f) PASTE(runner_dopair1_naive, f)
#define DOPAIR1_NAIVE _DOPAIR1_NAIVE(FUNCTION)

#define _DOPAIR2_NAIVE(f) PASTE(runner_dopair2_naive, f)
#define DOPAIR2_NAIVE _DOPAIR2_NAIVE(FUNCTION)
52

Matthieu Schaller's avatar
Matthieu Schaller committed
53
54
#define _DOSELF2_NAIVE(f) PASTE(runner_doself2_naive, f)
#define DOSELF2_NAIVE _DOSELF2_NAIVE(FUNCTION)
55

56
#define _DOSELF1(f) PASTE(runner_doself1, f)
57
#define DOSELF1 _DOSELF1(FUNCTION)
58

59
#define _DOSELF2(f) PASTE(runner_doself2, f)
60
#define DOSELF2 _DOSELF2(FUNCTION)
61

62
#define _DOSELF_SUBSET(f) PASTE(runner_doself_subset, f)
63
#define DOSELF_SUBSET _DOSELF_SUBSET(FUNCTION)
64

65
66
67
68
69
70
71
72
#define _DOSUB_SELF1(f) PASTE(runner_dosub_self1, f)
#define DOSUB_SELF1 _DOSUB_SELF1(FUNCTION)

#define _DOSUB_PAIR1(f) PASTE(runner_dosub_pair1, f)
#define DOSUB_PAIR1 _DOSUB_PAIR1(FUNCTION)

#define _DOSUB_SELF2(f) PASTE(runner_dosub_self2, f)
#define DOSUB_SELF2 _DOSUB_SELF2(FUNCTION)
73

74
75
#define _DOSUB_PAIR2(f) PASTE(runner_dosub_pair2, f)
#define DOSUB_PAIR2 _DOSUB_PAIR2(FUNCTION)
76

77
#define _DOSUB_SUBSET(f) PASTE(runner_dosub_subset, f)
78
#define DOSUB_SUBSET _DOSUB_SUBSET(FUNCTION)
79

80
#define _IACT_NONSYM(f) PASTE(runner_iact_nonsym, f)
81
#define IACT_NONSYM _IACT_NONSYM(FUNCTION)
82

83
#define _IACT(f) PASTE(runner_iact, f)
84
#define IACT _IACT(FUNCTION)
85

86
87
88
89
90
91
#define _IACT_NONSYM_VEC(f) PASTE(runner_iact_nonsym_vec, f)
#define IACT_NONSYM_VEC _IACT_NONSYM_VEC(FUNCTION)

#define _IACT_VEC(f) PASTE(runner_iact_vec, f)
#define IACT_VEC _IACT_VEC(FUNCTION)

92
#define _TIMER_DOSELF(f) PASTE(timer_doself, f)
93
#define TIMER_DOSELF _TIMER_DOSELF(FUNCTION)
94

95
#define _TIMER_DOPAIR(f) PASTE(timer_dopair, f)
96
#define TIMER_DOPAIR _TIMER_DOPAIR(FUNCTION)
Pedro Gonnet's avatar
Pedro Gonnet committed
97

98
99
100
101
102
#define _TIMER_DOSUB_SELF(f) PASTE(timer_dosub_self, f)
#define TIMER_DOSUB_SELF _TIMER_DOSUB_SELF(FUNCTION)

#define _TIMER_DOSUB_PAIR(f) PASTE(timer_dosub_pair, f)
#define TIMER_DOSUB_PAIR _TIMER_DOSUB_PAIR(FUNCTION)
103

104
#define _TIMER_DOSELF_SUBSET(f) PASTE(timer_doself_subset, f)
105
106
#define TIMER_DOSELF_SUBSET _TIMER_DOSELF_SUBSET(FUNCTION)

107
#define _TIMER_DOPAIR_SUBSET(f) PASTE(timer_dopair_subset, f)
108
109
#define TIMER_DOPAIR_SUBSET _TIMER_DOPAIR_SUBSET(FUNCTION)

110
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
111
112
113
 * @brief Compute the interactions between a cell pair (non-symmetric case).
 *
 * Inefficient version using a brute-force algorithm.
114
115
116
117
118
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The second #cell.
 */
119
void DOPAIR1_NAIVE(struct runner *r, struct cell *restrict ci,
120
                   struct cell *restrict cj) {
121
122
123
124

  const struct engine *e = r->e;

#ifndef SWIFT_DEBUG_CHECKS
125
  error("Don't use in actual runs ! Slow code !");
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#endif

#ifdef WITH_VECTORIZATION
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
  TIMER_TIC;

  /* Anything to do here? */
  if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;

  const int count_i = ci->count;
  const int count_j = cj->count;
  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;

  /* Get the relative distance between the pairs, wrapping. */
  double shift[3] = {0.0, 0.0, 0.0};
  for (int k = 0; k < 3; k++) {
    if (cj->loc[k] - ci->loc[k] < -e->s->dim[k] / 2)
      shift[k] = e->s->dim[k];
    else if (cj->loc[k] - ci->loc[k] > e->s->dim[k] / 2)
      shift[k] = -e->s->dim[k];
  }

  /* Loop over the parts in ci. */
  for (int pid = 0; pid < count_i; pid++) {

    /* Get a hold of the ith part in ci. */
    struct part *restrict pi = &parts_i[pid];
    const float hi = pi->h;

    double pix[3];
    for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];
    const float hig2 = hi * hi * kernel_gamma2;

    /* Loop over the parts in cj. */
    for (int pjd = 0; pjd < count_j; pjd++) {

      /* Get a pointer to the jth particle. */
      struct part *restrict pj = &parts_j[pjd];

      /* Compute the pairwise distance. */
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
        dx[k] = pix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }

      /* Hit or miss? */
      if (r2 < hig2) {

#ifndef WITH_VECTORIZATION

        IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = dx[0];
        dxq[3 * icount + 1] = dx[1];
        dxq[3 * icount + 2] = dx[2];
        hiq[icount] = hi;
        hjq[icount] = pj->h;
        piq[icount] = pi;
        pjq[icount] = pj;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
        }

#endif
      }
      if (r2 < pj->h * pj->h * kernel_gamma2) {

#ifndef WITH_VECTORIZATION
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        for (int k = 0; k < 3; k++) dx[k] = -dx[k];
        IACT_NONSYM(r2, dx, pj->h, hi, pj, pi);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = -dx[0];
        dxq[3 * icount + 1] = -dx[1];
        dxq[3 * icount + 2] = -dx[2];
        hiq[icount] = pj->h;
        hjq[icount] = hi;
        piq[icount] = pj;
        pjq[icount] = pi;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
        }

#endif
      }

    } /* loop over the parts in cj. */

  } /* loop over the parts in ci. */

#ifdef WITH_VECTORIZATION
  /* Pick up any leftovers. */
  if (icount > 0)
    for (int k = 0; k < icount; k++)
      IACT_NONSYM(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif

  TIMER_TOC(TIMER_DOPAIR);
}

Matthieu Schaller's avatar
Matthieu Schaller committed
251
252
253
254
255
256
257
258
259
/**
 * @brief Compute the interactions between a cell pair (symmetric case).
 *
 * Inefficient version using a brute-force algorithm.
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The second #cell.
 */
260
void DOPAIR2_NAIVE(struct runner *r, struct cell *restrict ci,
261
                   struct cell *restrict cj) {
262

263
264
  const struct engine *e = r->e;

265
#ifndef SWIFT_DEBUG_CHECKS
266
  error("Don't use in actual runs ! Slow code !");
267
#endif
268

269
#ifdef WITH_OLD_VECTORIZATION
270
271
272
273
274
275
276
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
277
  TIMER_TIC;
278
279

  /* Anything to do here? */
280
  if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
281

282
283
284
285
286
  const int count_i = ci->count;
  const int count_j = cj->count;
  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;

287
  /* Get the relative distance between the pairs, wrapping. */
288
289
  double shift[3] = {0.0, 0.0, 0.0};
  for (int k = 0; k < 3; k++) {
290
291
292
293
294
295
296
    if (cj->loc[k] - ci->loc[k] < -e->s->dim[k] / 2)
      shift[k] = e->s->dim[k];
    else if (cj->loc[k] - ci->loc[k] > e->s->dim[k] / 2)
      shift[k] = -e->s->dim[k];
  }

  /* Loop over the parts in ci. */
297
  for (int pid = 0; pid < count_i; pid++) {
298
299

    /* Get a hold of the ith part in ci. */
300
301
302
303
304
305
    struct part *restrict pi = &parts_i[pid];
    const float hi = pi->h;

    double pix[3];
    for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];
    const float hig2 = hi * hi * kernel_gamma2;
306
307

    /* Loop over the parts in cj. */
308
    for (int pjd = 0; pjd < count_j; pjd++) {
309
310

      /* Get a pointer to the jth particle. */
311
      struct part *restrict pj = &parts_j[pjd];
312
313

      /* Compute the pairwise distance. */
314
315
316
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
317
318
319
320
321
322
323
        dx[k] = pix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }

      /* Hit or miss? */
      if (r2 < hig2 || r2 < pj->h * pj->h * kernel_gamma2) {

324
#ifndef WITH_OLD_VECTORIZATION
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

        IACT(r2, dx, hi, pj->h, pi, pj);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = dx[0];
        dxq[3 * icount + 1] = dx[1];
        dxq[3 * icount + 2] = dx[2];
        hiq[icount] = hi;
        hjq[icount] = pj->h;
        piq[icount] = pi;
        pjq[icount] = pj;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
345
346
        }

347
348
349
350
351
352
353
#endif
      }

    } /* loop over the parts in cj. */

  } /* loop over the parts in ci. */

354
#ifdef WITH_OLD_VECTORIZATION
355
356
  /* Pick up any leftovers. */
  if (icount > 0)
357
    for (int k = 0; k < icount; k++)
358
359
360
361
362
363
      IACT(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif

  TIMER_TOC(TIMER_DOPAIR);
}

Matthieu Schaller's avatar
Matthieu Schaller committed
364
365
366
367
368
369
370
371
372
/**
 * @brief Compute the interactions within a cell (symmetric case).
 *
 * Inefficient version using a brute-force algorithm.
 *
 * @param r The #runner.
 * @param c The #cell.
 */
void DOSELF2_NAIVE(struct runner *r, struct cell *restrict c) {
373

374
  const struct engine *e = r->e;
375

376
#ifndef SWIFT_DEBUG_CHECKS
377
  error("Don't use in actual runs ! Slow code !");
378
#endif
379

380
#ifdef WITH_OLD_VECTORIZATION
381
382
383
384
385
386
387
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
388

Matthieu Schaller's avatar
Matthieu Schaller committed
389
  TIMER_TIC;
390
391

  /* Anything to do here? */
392
  if (!cell_is_active(c, e)) return;
393

394
395
  const int count = c->count;
  struct part *restrict parts = c->parts;
396
397

  /* Loop over the parts in ci. */
398
  for (int pid = 0; pid < count; pid++) {
399
400

    /* Get a hold of the ith part in ci. */
401
402
403
404
    struct part *restrict pi = &parts[pid];
    const double pix[3] = {pi->x[0], pi->x[1], pi->x[2]};
    const float hi = pi->h;
    const float hig2 = hi * hi * kernel_gamma2;
405

406
    /* Loop over the parts in cj. */
407
    for (int pjd = pid + 1; pjd < count; pjd++) {
408
409

      /* Get a pointer to the jth particle. */
410
      struct part *restrict pj = &parts[pjd];
411
412

      /* Compute the pairwise distance. */
413
414
415
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
416
417
418
419
420
421
422
        dx[k] = pix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }

      /* Hit or miss? */
      if (r2 < hig2 || r2 < pj->h * pj->h * kernel_gamma2) {

423
#ifndef WITH_OLD_VECTORIZATION
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        IACT(r2, dx, hi, pj->h, pi, pj);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = dx[0];
        dxq[3 * icount + 1] = dx[1];
        dxq[3 * icount + 2] = dx[2];
        hiq[icount] = hi;
        hjq[icount] = pj->h;
        piq[icount] = pi;
        pjq[icount] = pj;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
        }
445

446
447
#endif
      }
448

449
    } /* loop over the parts in cj. */
450

451
452
  } /* loop over the parts in ci. */

453
#ifdef WITH_OLD_VECTORIZATION
454
455
  /* Pick up any leftovers. */
  if (icount > 0)
456
    for (int k = 0; k < icount; k++)
457
458
      IACT(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif
459

460
461
  TIMER_TOC(TIMER_DOSELF);
}
462

463
464
465
466
/**
 * @brief Compute the interactions between a cell pair, but only for the
 *      given indices in ci.
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
467
468
 * Version using a brute-force algorithm.
 *
469
470
 * @param r The #runner.
 * @param ci The first #cell.
471
 * @param parts_i The #part to interact with @c cj.
472
473
474
475
 * @param ind The list of indices of particles in @c ci to interact with.
 * @param count The number of particles in @c ind.
 * @param cj The second #cell.
 */
476
477
478
479
void DOPAIR_SUBSET_NAIVE(struct runner *r, struct cell *restrict ci,
                         struct part *restrict parts_i, int *restrict ind,
                         int count, struct cell *restrict cj) {

480
  const struct engine *e = r->e;
481

482
#ifdef WITH_OLD_VECTORIZATION
483
484
485
486
487
488
489
490
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif

Matthieu Schaller's avatar
Matthieu Schaller committed
491
  TIMER_TIC;
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

  const int count_j = cj->count;
  struct part *restrict parts_j = cj->parts;

  /* Get the relative distance between the pairs, wrapping. */
  double shift[3] = {0.0, 0.0, 0.0};
  for (int k = 0; k < 3; k++) {
    if (cj->loc[k] - ci->loc[k] < -e->s->dim[k] / 2)
      shift[k] = e->s->dim[k];
    else if (cj->loc[k] - ci->loc[k] > e->s->dim[k] / 2)
      shift[k] = -e->s->dim[k];
  }

  /* Loop over the parts_i. */
  for (int pid = 0; pid < count; pid++) {

    /* Get a hold of the ith part in ci. */
    struct part *restrict pi = &parts_i[ind[pid]];
    double pix[3];
    for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];
    const float hi = pi->h;
    const float hig2 = hi * hi * kernel_gamma2;

515
516
517
518
519
520
#ifdef SWIFT_DEBUG_CHECKS
    if (!part_is_active(pi, e))
      error("Trying to correct smoothing length of inactive particle !");

#endif

521
522
523
524
525
526
527
528
529
530
531
532
533
    /* Loop over the parts in cj. */
    for (int pjd = 0; pjd < count_j; pjd++) {

      /* Get a pointer to the jth particle. */
      struct part *restrict pj = &parts_j[pjd];

      /* Compute the pairwise distance. */
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
        dx[k] = pix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }
534

535
536
537
538
539
540
541
542
#ifdef SWIFT_DEBUG_CHECKS
      /* Check that particles have been drifted to the current time */
      if (pi->ti_drift != e->ti_current)
        error("Particle pi not drifted to current time");
      if (pj->ti_drift != e->ti_current)
        error("Particle pj not drifted to current time");
#endif

543
544
545
      /* Hit or miss? */
      if (r2 < hig2) {

546
#ifndef WITH_OLD_VECTORIZATION
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

        IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = dx[0];
        dxq[3 * icount + 1] = dx[1];
        dxq[3 * icount + 2] = dx[2];
        hiq[icount] = hi;
        hjq[icount] = pj->h;
        piq[icount] = pi;
        pjq[icount] = pj;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
        }

#endif
      }

    } /* loop over the parts in cj. */

  } /* loop over the parts in ci. */
575

576
#ifdef WITH_OLD_VECTORIZATION
577
578
579
580
581
582
  /* Pick up any leftovers. */
  if (icount > 0)
    for (int k = 0; k < icount; k++)
      IACT_NONSYM(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif

583
  TIMER_TOC(timer_dopair_subset_naive);
584
585
586
587
588
589
590
591
592
593
594
595
596
}

/**
 * @brief Compute the interactions between a cell pair, but only for the
 *      given indices in ci.
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param parts_i The #part to interact with @c cj.
 * @param ind The list of indices of particles in @c ci to interact with.
 * @param count The number of particles in @c ind.
 * @param cj The second #cell.
 */
597
598
599
600
601
void DOPAIR_SUBSET(struct runner *r, struct cell *restrict ci,
                   struct part *restrict parts_i, int *restrict ind, int count,
                   struct cell *restrict cj) {

  struct engine *e = r->e;
602

603
#ifdef WITH_OLD_VECTORIZATION
604
605
606
607
608
609
610
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
611

Matthieu Schaller's avatar
Matthieu Schaller committed
612
  TIMER_TIC;
613

614
615
616
  const int count_j = cj->count;
  struct part *restrict parts_j = cj->parts;

617
  /* Get the relative distance between the pairs, wrapping. */
618
619
  double shift[3] = {0.0, 0.0, 0.0};
  for (int k = 0; k < 3; k++) {
620
621
622
623
624
625
626
    if (cj->loc[k] - ci->loc[k] < -e->s->dim[k] / 2)
      shift[k] = e->s->dim[k];
    else if (cj->loc[k] - ci->loc[k] > e->s->dim[k] / 2)
      shift[k] = -e->s->dim[k];
  }

  /* Get the sorting index. */
627
628
  int sid = 0;
  for (int k = 0; k < 3; k++)
629
630
631
632
633
    sid = 3 * sid + ((cj->loc[k] - ci->loc[k] + shift[k] < 0)
                         ? 0
                         : (cj->loc[k] - ci->loc[k] + shift[k] > 0) ? 2 : 1);

  /* Switch the cells around? */
634
  const int flipped = runner_flip[sid];
635
636
637
  sid = sortlistID[sid];

  /* Have the cells been sorted? */
Pedro Gonnet's avatar
Pedro Gonnet committed
638
639
  if (!(cj->sorted & (1 << sid)) ||
      cj->dx_max_sort > space_maxreldx * cj->dmin) {
640
641
642
    DOPAIR_SUBSET_NAIVE(r, ci, parts_i, ind, count, cj);
    return;
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
643

644
  /* Pick-out the sorted lists. */
645
  const struct entry *restrict sort_j = &cj->sort[sid * (cj->count + 1)];
646
  const float dxj = cj->dx_max_sort;
647
648
649
650
651

  /* Parts are on the left? */
  if (!flipped) {

    /* Loop over the parts_i. */
652
    for (int pid = 0; pid < count; pid++) {
653
654

      /* Get a hold of the ith part in ci. */
655
656
657
658
659
660
661
662
663
      struct part *restrict pi = &parts_i[ind[pid]];
      double pix[3];
      for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];

      const float hi = pi->h;
      const float hig2 = hi * hi * kernel_gamma2;
      const float di = hi * kernel_gamma + dxj + pix[0] * runner_shift[sid][0] +
                       pix[1] * runner_shift[sid][1] +
                       pix[2] * runner_shift[sid][2];
664
665

      /* Loop over the parts in cj. */
666
      for (int pjd = 0; pjd < count_j && sort_j[pjd].d < di; pjd++) {
667
668

        /* Get a pointer to the jth particle. */
669
        struct part *restrict pj = &parts_j[sort_j[pjd].i];
670
671

        /* Compute the pairwise distance. */
672
673
674
        float r2 = 0.0f;
        float dx[3];
        for (int k = 0; k < 3; k++) {
675
676
          dx[k] = pix[k] - pj->x[k];
          r2 += dx[k] * dx[k];
677
        }
678
679
680
681

        /* Hit or miss? */
        if (r2 < hig2) {

682
#ifndef WITH_OLD_VECTORIZATION
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

          IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);

#else

          /* Add this interaction to the queue. */
          r2q[icount] = r2;
          dxq[3 * icount + 0] = dx[0];
          dxq[3 * icount + 1] = dx[1];
          dxq[3 * icount + 2] = dx[2];
          hiq[icount] = hi;
          hjq[icount] = pj->h;
          piq[icount] = pi;
          pjq[icount] = pj;
          icount += 1;

          /* Flush? */
          if (icount == VEC_SIZE) {
            IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
            icount = 0;
          }

#endif
706
        }
707
708
709
710
711
712
713
714
715
716
717

      } /* loop over the parts in cj. */

    } /* loop over the parts in ci. */

  }

  /* Parts are on the right. */
  else {

    /* Loop over the parts_i. */
718
    for (int pid = 0; pid < count; pid++) {
719
720

      /* Get a hold of the ith part in ci. */
721
722
723
724
725
726
727
728
      struct part *restrict pi = &parts_i[ind[pid]];
      double pix[3];
      for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];
      const float hi = pi->h;
      const float hig2 = hi * hi * kernel_gamma2;
      const float di =
          -hi * kernel_gamma - dxj + pix[0] * runner_shift[sid][0] +
          pix[1] * runner_shift[sid][1] + pix[2] * runner_shift[sid][2];
729
730

      /* Loop over the parts in cj. */
731
      for (int pjd = count_j - 1; pjd >= 0 && di < sort_j[pjd].d; pjd--) {
732
733

        /* Get a pointer to the jth particle. */
734
        struct part *restrict pj = &parts_j[sort_j[pjd].i];
735
736

        /* Compute the pairwise distance. */
737
738
739
        float r2 = 0.0f;
        float dx[3];
        for (int k = 0; k < 3; k++) {
740
741
          dx[k] = pix[k] - pj->x[k];
          r2 += dx[k] * dx[k];
742
        }
743

744
745
        /* Hit or miss? */
        if (r2 < hig2) {
746

747
#ifndef WITH_OLD_VECTORIZATION
748
749

          IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);
750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
#else

          /* Add this interaction to the queue. */
          r2q[icount] = r2;
          dxq[3 * icount + 0] = dx[0];
          dxq[3 * icount + 1] = dx[1];
          dxq[3 * icount + 2] = dx[2];
          hiq[icount] = hi;
          hjq[icount] = pj->h;
          piq[icount] = pi;
          pjq[icount] = pj;
          icount += 1;

          /* Flush? */
          if (icount == VEC_SIZE) {
            IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
            icount = 0;
          }

#endif
        }

      } /* loop over the parts in cj. */

    } /* loop over the parts in ci. */
  }

778
#ifdef WITH_OLD_VECTORIZATION
779
780
  /* Pick up any leftovers. */
  if (icount > 0)
781
    for (int k = 0; k < icount; k++)
782
783
      IACT_NONSYM(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif
Pedro Gonnet's avatar
Pedro Gonnet committed
784

785
786
  TIMER_TOC(timer_dopair_subset);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
787

788
789
790
791
792
793
/**
 * @brief Compute the interactions between a cell pair, but only for the
 *      given indices in ci.
 *
 * @param r The #runner.
 * @param ci The first #cell.
794
 * @param parts The #part to interact.
795
796
797
 * @param ind The list of indices of particles in @c ci to interact with.
 * @param count The number of particles in @c ind.
 */
798
799
800
void DOSELF_SUBSET(struct runner *r, struct cell *restrict ci,
                   struct part *restrict parts, int *restrict ind, int count) {

801
#ifdef WITH_OLD_VECTORIZATION
802
803
804
805
806
807
808
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
809

Matthieu Schaller's avatar
Matthieu Schaller committed
810
  TIMER_TIC;
811

812
813
  const int count_i = ci->count;
  struct part *restrict parts_j = ci->parts;
814
815

  /* Loop over the parts in ci. */
816
  for (int pid = 0; pid < count; pid++) {
817
818

    /* Get a hold of the ith part in ci. */
819
820
821
822
    struct part *restrict pi = &parts[ind[pid]];
    const double pix[3] = {pi->x[0], pi->x[1], pi->x[2]};
    const float hi = pi->h;
    const float hig2 = hi * hi * kernel_gamma2;
823

824
    /* Loop over the parts in cj. */
825
    for (int pjd = 0; pjd < count_i; pjd++) {
826
827

      /* Get a pointer to the jth particle. */
828
      struct part *restrict pj = &parts_j[pjd];
829
830

      /* Compute the pairwise distance. */
831
832
833
      float r2 = 0.0f;
      float dx[3];
      for (int k = 0; k < 3; k++) {
834
835
836
837
838
839
840
        dx[k] = pix[k] - pj->x[k];
        r2 += dx[k] * dx[k];
      }

      /* Hit or miss? */
      if (r2 > 0.0f && r2 < hig2) {

841
#ifndef WITH_OLD_VECTORIZATION
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

        IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);

#else

        /* Add this interaction to the queue. */
        r2q[icount] = r2;
        dxq[3 * icount + 0] = dx[0];
        dxq[3 * icount + 1] = dx[1];
        dxq[3 * icount + 2] = dx[2];
        hiq[icount] = hi;
        hjq[icount] = pj->h;
        piq[icount] = pi;
        pjq[icount] = pj;
        icount += 1;

        /* Flush? */
        if (icount == VEC_SIZE) {
          IACT_NONSYM_VEC(r2q, dxq, hiq, hjq, piq, pjq);
          icount = 0;
        }

#endif
      }

    } /* loop over the parts in cj. */

  } /* loop over the parts in ci. */
870

871
#ifdef WITH_OLD_VECTORIZATION
872
873
  /* Pick up any leftovers. */
  if (icount > 0)
874
    for (int k = 0; k < icount; k++)
875
876
877
      IACT_NONSYM(r2q[k], &dxq[3 * k], hiq[k], hjq[k], piq[k], pjq[k]);
#endif

878
  TIMER_TOC(timer_doself_subset);
879
}
880

881
/**
882
 * @brief Compute the interactions between a cell pair (non-symmetric).
883
884
885
886
 *
 * @param r The #runner.
 * @param ci The first #cell.
 * @param cj The second #cell.
887
888
 * @param sid The direction of the pair
 * @param shift The shift vector to apply to the particles in ci.
889
 */
890
891
void DOPAIR1(struct runner *r, struct cell *ci, struct cell *cj, const int sid,
             const double *shift) {
892

893
  const struct engine *restrict e = r->e;
894

895
#ifdef WITH_OLD_VECTORIZATION
896
897
898
899
900
901
902
  int icount = 0;
  float r2q[VEC_SIZE] __attribute__((aligned(16)));
  float hiq[VEC_SIZE] __attribute__((aligned(16)));
  float hjq[VEC_SIZE] __attribute__((aligned(16)));
  float dxq[3 * VEC_SIZE] __attribute__((aligned(16)));
  struct part *piq[VEC_SIZE], *pjq[VEC_SIZE];
#endif
903

Matthieu Schaller's avatar
Matthieu Schaller committed
904
  TIMER_TIC;
905
906

  /* Get the cutoff shift. */
907
908
  double rshift = 0.0;
  for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k];
909
910

  /* Pick-out the sorted lists. */
911
912
  const struct entry *restrict sort_i = &ci->sort[sid * (ci->count + 1)];
  const struct entry *restrict sort_j = &cj->sort[sid * (cj->count + 1)];
913

914
915
916
917
918
919
920
921
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the dx_max_sort values in the cell are indeed an upper
     bound on particle movement. */
  for (int pid = 0; pid < ci->count; pid++) {
    const struct part *p = &ci->parts[sort_i[pid].i];
    const float d = p->x[0] * runner_shift[sid][0] +
                    p->x[1] * runner_shift[sid][1] +
                    p->x[2] * runner_shift[sid][2];
922
923
    if (fabsf(d - sort_i[pid].d) - ci->dx_max_sort >
        1.0e-6 * max(fabsf(d), ci->dx_max_sort))
924
925
926
927
928
929
930
      error("particle shift diff exceeds dx_max_sort.");
  }
  for (int pjd = 0; pjd < cj->count; pjd++) {
    const struct part *p = &cj->parts[sort_j[pjd].i];
    const float d = p->x[0] * runner_shift[sid][0] +
                    p->x[1] * runner_shift[sid][1] +
                    p->x[2] * runner_shift[sid][2];
931
    if (fabsf(d - sort_j[pjd].d) - cj->dx_max_sort >
932
        1.0e-6 * max(fabsf(d), cj->dx_max_sort))
933
934
935
936
      error("particle shift diff exceeds dx_max_sort.");
  }
#endif /* SWIFT_DEBUG_CHECKS */

937
  /* Get some other useful values. */
938
939
940
941
942
943
944
945
  const double hi_max = ci->h_max * kernel_gamma - rshift;
  const double hj_max = cj->h_max * kernel_gamma;
  const int count_i = ci->count;
  const int count_j = cj->count;
  struct part *restrict parts_i = ci->parts;
  struct part *restrict parts_j = cj->parts;
  const double di_max = sort_i[count_i - 1].d - rshift;
  const double dj_min = sort_j[0].d;
946
  const float dx_max = (ci->dx_max_sort + cj->dx_max_sort);
947

948
  if (cell_is_active(ci, e)) {
949

950
951
952
    /* Loop over the parts in ci. */
    for (int pid = count_i - 1;
         pid >= 0 && sort_i[pid].d + hi_max + dx_max > dj_min; pid--) {
953

954
955
956
957
958
959
      /* Get a hold of the ith part in ci. */
      struct part *restrict pi = &parts_i[sort_i[pid].i];
      if (!part_is_active(pi, e)) continue;
      const float hi = pi->h;
      const double di = sort_i[pid].d + hi * kernel_gamma + dx_max - rshift;
      if (di < dj_min) continue;
960

961
962
963
      double pix[3];
      for (int k = 0; k < 3; k++) pix[k] = pi->x[k] - shift[k];
      const float hig2 = hi * hi * kernel_gamma2;
964

965
966
      /* Loop over the parts in cj. */
      for (int pjd = 0; pjd < count_j && sort_j[pjd].d < di; pjd++) {
967

968
969
970
971
972
973
974
975
976
977
        /* Get a pointer to the jth particle. */
        struct part *restrict pj = &parts_j[sort_j[pjd].i];

        /* Compute the pairwise distance. */
        float r2 = 0.0f;
        float dx[3];
        for (int k = 0; k < 3; k++) {
          dx[k] = pix[k] - pj->x[k];
          r2 += dx[k] * dx[k];
        }
978

979
#ifdef SWIFT_DEBUG_CHECKS
980
981
982
983
984
        /* Check that particles have been drifted to the current time */
        if (pi->ti_drift != e->ti_current)
          error("Particle pi not drifted to current time");
        if (pj->ti_drift != e->ti_current)
          error("Particle pj not drifted to current time");
985
986
#endif

987
988
        /* Hit or miss? */
        if (r2 < hig2) {
989

990
#ifndef WITH_OLD_VECTORIZATION
991

992
          IACT_NONSYM(r2, dx, hi, pj->h, pi, pj);
993
994
995

#else

996
997
998
999
1000
          /* Add this interaction to the queue. */
          r2q[icount] = r2;
          dxq[3 * icount + 0] = dx[0];
          dxq[3 * icount + 1] = dx[1];
          dxq[3 * icount + 2] = dx[2];