runner.c 56.8 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
23

Pedro Gonnet's avatar
Pedro Gonnet committed
24
25
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
26
27
28
29

/* Some standard headers. */
#include <float.h>
#include <limits.h>
30
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
39
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
40
/* Local headers. */
41
#include "active.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
42
#include "approx_math.h"
43
#include "atomic.h"
44
#include "cell.h"
45
#include "const.h"
Stefan Arridge's avatar
Stefan Arridge committed
46
#include "cooling.h"
47
#include "debug.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
48
#include "drift.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
49
#include "engine.h"
50
#include "error.h"
51
52
#include "gravity.h"
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
53
#include "hydro_properties.h"
54
#include "kick.h"
55
#include "minmax.h"
56
#include "runner_doiact_fft.h"
James Willis's avatar
James Willis committed
57
#include "runner_doiact_vec.h"
58
#include "scheduler.h"
59
#include "sort_part.h"
60
#include "sourceterms.h"
61
#include "space.h"
62
#include "stars.h"
63
64
#include "task.h"
#include "timers.h"
65
#include "timestep.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
66

67
/* Import the density loop functions. */
68
69
70
#define FUNCTION density
#include "runner_doiact.h"

71
/* Import the gradient loop functions (if required). */
72
73
74
75
76
77
#ifdef EXTRA_HYDRO_LOOP
#undef FUNCTION
#define FUNCTION gradient
#include "runner_doiact.h"
#endif

78
/* Import the force loop functions. */
79
80
81
82
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

83
/* Import the gravity loop functions. */
84
#include "runner_doiact_fft.h"
85
#include "runner_doiact_grav.h"
86

Tom Theuns's avatar
Tom Theuns committed
87
/**
Tom Theuns's avatar
Tom Theuns committed
88
 * @brief Perform source terms
Tom Theuns's avatar
Tom Theuns committed
89
90
91
92
93
94
95
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_sourceterms(struct runner *r, struct cell *c, int timer) {
  const int count = c->count;
96
  const double cell_min[3] = {c->loc[0], c->loc[1], c->loc[2]};
Tom Theuns's avatar
Tom Theuns committed
97
  const double cell_width[3] = {c->width[0], c->width[1], c->width[2]};
Tom Theuns's avatar
Tom Theuns committed
98
  struct sourceterms *sourceterms = r->e->sourceterms;
99
  const int dimen = 3;
Tom Theuns's avatar
Tom Theuns committed
100
101
102
103
104
105
106

  TIMER_TIC;

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_sourceterms(r, c->progeny[k], 0);
107
  } else {
Tom Theuns's avatar
Tom Theuns committed
108

109
    if (count > 0) {
Tom Theuns's avatar
Tom Theuns committed
110

111
112
113
114
115
116
      /* do sourceterms in this cell? */
      const int incell =
          sourceterms_test_cell(cell_min, cell_width, sourceterms, dimen);
      if (incell == 1) {
        sourceterms_apply(r, sourceterms, c);
      }
Tom Theuns's avatar
Tom Theuns committed
117
118
    }
  }
Tom Theuns's avatar
Tom Theuns committed
119
120
121
122

  if (timer) TIMER_TOC(timer_dosource);
}

Tom Theuns's avatar
Tom Theuns committed
123
124
125
/**
 * @brief Calculate gravity acceleration from external potential
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
126
127
128
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
Tom Theuns's avatar
Tom Theuns committed
129
 */
130
void runner_do_grav_external(struct runner *r, struct cell *c, int timer) {
Tom Theuns's avatar
Tom Theuns committed
131

Matthieu Schaller's avatar
Matthieu Schaller committed
132
133
  struct gpart *restrict gparts = c->gparts;
  const int gcount = c->gcount;
134
135
136
  const struct engine *e = r->e;
  const struct external_potential *potential = e->external_potential;
  const struct phys_const *constants = e->physical_constants;
137
  const double time = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
138

139
  TIMER_TIC;
Tom Theuns's avatar
Tom Theuns committed
140

141
  /* Anything to do here? */
142
  if (!cell_is_active(c, e)) return;
143

Tom Theuns's avatar
Tom Theuns committed
144
145
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
146
    for (int k = 0; k < 8; k++)
147
      if (c->progeny[k] != NULL) runner_do_grav_external(r, c->progeny[k], 0);
148
  } else {
149

150
151
    /* Loop over the gparts in this cell. */
    for (int i = 0; i < gcount; i++) {
152

153
154
      /* Get a direct pointer on the part. */
      struct gpart *restrict gp = &gparts[i];
Matthieu Schaller's avatar
Matthieu Schaller committed
155

156
      /* Is this part within the time step? */
157
      if (gpart_is_active(gp, e)) {
158
159
        external_gravity_acceleration(time, potential, constants, gp);
      }
160
    }
161
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
162

163
  if (timer) TIMER_TOC(timer_dograv_external);
Tom Theuns's avatar
Tom Theuns committed
164
165
}

Stefan Arridge's avatar
Stefan Arridge committed
166
/**
167
168
 * @brief Calculate change in thermal state of particles induced
 * by radiative cooling and heating.
Stefan Arridge's avatar
Stefan Arridge committed
169
170
171
172
173
174
175
176
 *
 * @param r runner task
 * @param c cell
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_cooling(struct runner *r, struct cell *c, int timer) {

  struct part *restrict parts = c->parts;
177
  struct xpart *restrict xparts = c->xparts;
Stefan Arridge's avatar
Stefan Arridge committed
178
  const int count = c->count;
179
180
181
  const struct engine *e = r->e;
  const struct cooling_function_data *cooling_func = e->cooling_func;
  const struct phys_const *constants = e->physical_constants;
182
  const struct unit_system *us = e->internal_units;
183
  const double timeBase = e->timeBase;
Stefan Arridge's avatar
Stefan Arridge committed
184
185
186

  TIMER_TIC;

187
188
189
  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

Stefan Arridge's avatar
Stefan Arridge committed
190
191
192
193
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_cooling(r, c->progeny[k], 0);
194
  } else {
Stefan Arridge's avatar
Stefan Arridge committed
195

196
197
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
Stefan Arridge's avatar
Stefan Arridge committed
198

199
200
201
      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];
      struct xpart *restrict xp = &xparts[i];
Stefan Arridge's avatar
Stefan Arridge committed
202

203
      if (part_is_active(p, e)) {
204

205
206
        /* Let's cool ! */
        const double dt = get_timestep(p->time_bin, timeBase);
207
208
        cooling_cool_part(constants, us, cooling_func, p, xp, dt);
      }
Stefan Arridge's avatar
Stefan Arridge committed
209
210
211
212
213
214
    }
  }

  if (timer) TIMER_TOC(timer_do_cooling);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
217
218
219
220
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
221
void runner_do_sort_ascending(struct entry *sort, int N) {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
276
        }
277
278
279
280
281
282
283
284
285
286
287
288
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
289
    }
290
291
292
  }
}

Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
295
296
297
298
299
300
/**
 * @brief Recursively checks that the flags are consistent in a cell hierarchy.
 *
 * Debugging function.
 *
 * @param c The #cell to check.
 * @param flags The sorting flags to check.
 */
301
void runner_check_sorts(struct cell *c, int flags) {
Matthieu Schaller's avatar
Matthieu Schaller committed
302
303

#ifdef SWIFT_DEBUG_CHECKS
Pedro Gonnet's avatar
Pedro Gonnet committed
304
  if (flags & ~c->sorted) error("Inconsistent sort flags (downward)!");
305
306
  if (c->split)
    for (int k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
307
      if (c->progeny[k] != NULL) runner_check_sorts(c->progeny[k], c->sorted);
Matthieu Schaller's avatar
Matthieu Schaller committed
308
309
310
#else
  error("Calling debugging code without debugging flag activated.");
#endif
311
312
}

Pedro Gonnet's avatar
Pedro Gonnet committed
313
314
315
316
317
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
318
 * @param flags Cell flag.
319
320
 * @param cleanup If true, re-build the sorts for the selected flags instead
 *        of just adding them.
321
322
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
323
 */
324
325
void runner_do_sort(struct runner *r, struct cell *c, int flags, int cleanup,
                    int clock) {
326
327
328
329

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
330
  struct xpart *xparts = c->xparts;
331
  const int count = c->count;
Matthieu Schaller's avatar
Matthieu Schaller committed
332
  float buff[8];
333

334
335
336
  TIMER_TIC;

  /* Check that the particles have been moved to the current time */
337
  if (!cell_are_part_drifted(c, r->e)) error("Sorting un-drifted cell");
Pedro Gonnet's avatar
Pedro Gonnet committed
338

339
340
341
342
343
#ifdef SWIFT_DEBUG_CHECKS
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, c->sorted);

  /* Make sure the sort flags are consistent (upard). */
Pedro Gonnet's avatar
Pedro Gonnet committed
344
345
346
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags (upward).");
347
348
  }
#endif
349

350
351
  /* Clean-up the flags, i.e. filter out what's already been sorted unless
     we're cleaning up. */
352
  if (cleanup && c->dx_max_sort > 0.0f) {
353
    /* Clear stale sorts. */
354
    c->sorted = 0;
355
356
357
  } else {
    /* Ignore dimensions that are already sorted. */
    flags &= ~c->sorted;
358
  }
359
360
  if (flags == 0) return;

361
362
  /* Update the sort timer which represents the last time the sorts
     were re-set. */
363
364
  if (c->sorted == 0) c->ti_sort = r->e->ti_current;

365
  /* start by allocating the entry arrays. */
366
367
368
  if (c->sort == NULL) {
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) * (count + 1) *
                                          13)) == NULL)
369
370
      error("Failed to allocate sort memory.");
  }
371
  struct entry *sort = c->sort;
372
373
374
375
376

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
377
    float dx_max_sort = 0.0f;
378
    float dx_max_sort_old = 0.0f;
379
    for (int k = 0; k < 8; k++) {
380
      if (c->progeny[k] != NULL) {
381
382
383
384
385
        /* Only propagate cleanup if the progeny is stale. */
        runner_do_sort(r, c->progeny[k], flags,
                       cleanup && (c->progeny[k]->dx_max_sort >
                                   space_maxreldx * c->progeny[k]->dmin),
                       0);
386
        dx_max_sort = max(dx_max_sort, c->progeny[k]->dx_max_sort);
387
        dx_max_sort_old = max(dx_max_sort_old, c->progeny[k]->dx_max_sort_old);
388
      }
389
    }
390
391
    c->dx_max_sort = dx_max_sort;
    c->dx_max_sort_old = dx_max_sort_old;
392
393

    /* Loop over the 13 different sort arrays. */
394
    for (int j = 0; j < 13; j++) {
395
396
397
398
399

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
400
      int off[8];
401
402
      off[0] = 0;
      for (int k = 1; k < 8; k++)
403
404
405
406
407
408
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
409
      int inds[8];
410
      for (int k = 0; k < 8; k++) {
411
412
413
414
415
416
417
418
419
420
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
421
422
      for (int i = 0; i < 7; i++)
        for (int k = i + 1; k < 8; k++)
423
          if (buff[inds[k]] < buff[inds[i]]) {
424
            int temp_i = inds[i];
425
426
427
428
429
430
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
431
      for (int ind = 0; ind < count; ind++) {
432
433
434
435
436
437
438
439
440
441

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
442
        for (int k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
443
          int temp_i = inds[k - 1];
444
445
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
446
        }
447

448
449
450
451
452
453
454
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
455
      atomic_or(&c->sorted, 1 << j);
456
457
458
459
460
461
462
463

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

464
    /* Reset the sort distance if we are in a local cell */
465
    if (c->sorted == 0) {
466
      for (int k = 0; k < count; k++) {
467
468
469
470
        xparts[k].x_diff_sort[0] = 0.0f;
        xparts[k].x_diff_sort[1] = 0.0f;
        xparts[k].x_diff_sort[2] = 0.0f;
      }
471
      c->dx_max_sort_old = c->dx_max_sort = 0.f;
472
473
    }

474
    /* Fill the sort array. */
475
    for (int k = 0; k < count; k++) {
476
      const double px[3] = {parts[k].x[0], parts[k].x[1], parts[k].x[2]};
477
      for (int j = 0; j < 13; j++)
478
479
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
Matthieu Schaller's avatar
Matthieu Schaller committed
480
481
482
          sort[j * (count + 1) + k].d = px[0] * runner_shift[j][0] +
                                        px[1] * runner_shift[j][1] +
                                        px[2] * runner_shift[j][2];
483
        }
484
    }
485
486

    /* Add the sentinel and sort. */
487
    for (int j = 0; j < 13; j++)
488
489
490
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
491
        runner_do_sort_ascending(&sort[j * (count + 1)], count);
492
        atomic_or(&c->sorted, 1 << j);
493
494
495
      }
  }

496
#ifdef SWIFT_DEBUG_CHECKS
Matthieu Schaller's avatar
Matthieu Schaller committed
497
  /* Verify the sorting. */
498
  for (int j = 0; j < 13; j++) {
499
500
    if (!(flags & (1 << j))) continue;
    finger = &sort[j * (count + 1)];
501
    for (int k = 1; k < count; k++) {
502
503
504
505
506
      if (finger[k].d < finger[k - 1].d)
        error("Sorting failed, ascending array.");
      if (finger[k].i >= count) error("Sorting failed, indices borked.");
    }
  }
Pedro Gonnet's avatar
Pedro Gonnet committed
507

508
509
510
511
  /* Make sure the sort flags are consistent (downward). */
  runner_check_sorts(c, flags);

  /* Make sure the sort flags are consistent (upward). */
Pedro Gonnet's avatar
Pedro Gonnet committed
512
513
514
  for (struct cell *finger = c->parent; finger != NULL;
       finger = finger->parent) {
    if (finger->sorted & ~c->sorted) error("Inconsistent sort flags.");
515
  }
516
#endif
517
518
519
520

  if (clock) TIMER_TOC(timer_dosort);
}

521
/**
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
 * @brief Initialize the multipoles before the gravity calculation.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer 1 if the time is to be recorded.
 */
void runner_do_init_grav(struct runner *r, struct cell *c, int timer) {

  const struct engine *e = r->e;

  TIMER_TIC;

#ifdef SWIFT_DEBUG_CHECKS
  if (!(e->policy & engine_policy_self_gravity))
    error("Grav-init task called outside of self-gravity calculation");
#endif

  /* Anything to do here? */
  if (!cell_is_active(c, e)) return;

  /* Drift the multipole */
  cell_drift_multipole(c, e);
544

545
546
547
548
549
550
551
552
553
554
555
556
557
  /* Reset the gravity acceleration tensors */
  gravity_field_tensors_init(&c->multipole->pot);

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL) runner_do_init_grav(r, c->progeny[k], 0);
    }
  }

  if (timer) TIMER_TOC(timer_init_grav);
}

558
/**
559
560
561
562
563
 * @brief Intermediate task after the gradient loop that does final operations
 * on the gradient quantities and optionally slope limits the gradients
 *
 * @param r The runner thread.
 * @param c The cell.
564
 * @param timer Are we timing this ?
565
 */
566
void runner_do_extra_ghost(struct runner *r, struct cell *c, int timer) {
567

568
#ifdef EXTRA_HYDRO_LOOP
569

570
571
  struct part *restrict parts = c->parts;
  const int count = c->count;
572
  const struct engine *e = r->e;
573

574
575
  TIMER_TIC;

576
  /* Anything to do here? */
577
  if (!cell_is_active(c, e)) return;
578

579
580
581
  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
582
      if (c->progeny[k] != NULL) runner_do_extra_ghost(r, c->progeny[k], 0);
583
584
585
586
587
588
589
590
  } else {

    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {

      /* Get a direct pointer on the part. */
      struct part *restrict p = &parts[i];

591
      if (part_is_active(p, e)) {
592
593
594
595
596
597

        /* Get ready for a force calculation */
        hydro_end_gradient(p);
      }
    }
  }
598

599
600
  if (timer) TIMER_TOC(timer_do_extra_ghost);

601
602
#else
  error("SWIFT was not compiled with the extra hydro loop activated.");
603
#endif
604
}
605

606
/**
607
608
 * @brief Intermediate task after the density to check that the smoothing
 * lengths are correct.
609
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
610
 * @param r The runner thread.
611
 * @param c The cell.
612
 * @param timer Are we timing this ?
613
 */
614
void runner_do_ghost(struct runner *r, struct cell *c, int timer) {
615

Matthieu Schaller's avatar
Matthieu Schaller committed
616
617
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
618
  const struct engine *e = r->e;
619
  const struct space *s = e->s;
620
  const float hydro_h_max = e->hydro_properties->h_max;
621
  const float target_wcount = e->hydro_properties->target_neighbours;
622
  const float max_wcount =
623
      target_wcount + e->hydro_properties->delta_neighbours;
624
  const float min_wcount =
625
626
      target_wcount - e->hydro_properties->delta_neighbours;
  const int max_smoothing_iter = e->hydro_properties->max_smoothing_iterations;
627
  int redo = 0, count = 0;
628

629
630
  TIMER_TIC;

631
  /* Anything to do here? */
632
  if (!cell_is_active(c, e)) return;
633

634
635
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
636
    for (int k = 0; k < 8; k++)
637
638
      if (c->progeny[k] != NULL) runner_do_ghost(r, c->progeny[k], 0);
  } else {
639

640
    /* Init the list of active particles that have to be updated. */
641
    int *pid = NULL;
642
    if ((pid = malloc(sizeof(int) * c->count)) == NULL)
643
      error("Can't allocate memory for pid.");
644
645
646
647
648
    for (int k = 0; k < c->count; k++)
      if (part_is_active(&parts[k], e)) {
        pid[count] = k;
        ++count;
      }
649

650
651
652
    /* While there are particles that need to be updated... */
    for (int num_reruns = 0; count > 0 && num_reruns < max_smoothing_iter;
         num_reruns++) {
653

654
655
      /* Reset the redo-count. */
      redo = 0;
656

657
      /* Loop over the remaining active parts in this cell. */
658
      for (int i = 0; i < count; i++) {
659

660
661
662
        /* Get a direct pointer on the part. */
        struct part *restrict p = &parts[pid[i]];
        struct xpart *restrict xp = &xparts[pid[i]];
663

664
#ifdef SWIFT_DEBUG_CHECKS
665
        /* Is this part within the timestep? */
666
667
668
669
670
        if (!part_is_active(p, e)) error("Ghost applied to inactive particle");
#endif

        /* Finish the density calculation */
        hydro_end_density(p);
671

672
673
        /* Did we get the right number of neighbours? */
        if (p->density.wcount > max_wcount || p->density.wcount < min_wcount) {
674

675
          float h_corr = 0.f;
Matthieu Schaller's avatar
Matthieu Schaller committed
676

677
678
          /* If no derivative, double the smoothing length. */
          if (p->density.wcount_dh == 0.0f) h_corr = p->h;
679

680
681
682
          /* Otherwise, compute the smoothing length update (Newton step). */
          else {
            h_corr = (target_wcount - p->density.wcount) / p->density.wcount_dh;
683

684
685
686
687
            /* Truncate to the range [ -p->h/2 , p->h ]. */
            h_corr = (h_corr < p->h) ? h_corr : p->h;
            h_corr = (h_corr > -0.5f * p->h) ? h_corr : -0.5f * p->h;
          }
688

689
690
          /* Ok, correct then */
          p->h += h_corr;
691

692
693
          /* If below the absolute maximum, try again */
          if (p->h < hydro_h_max) {
694

695
696
697
            /* Flag for another round of fun */
            pid[redo] = pid[i];
            redo += 1;
698

699
            /* Re-initialise everything */
700
            hydro_init_part(p, &s->hs);
701
702
703
704
705
706
707
708

            /* Off we go ! */
            continue;
          } else {

            /* Ok, this particle is a lost cause... */
            p->h = hydro_h_max;
          }
709
        }
710

711
        /* We now have a particle whose smoothing length has converged */
Matthieu Schaller's avatar
Matthieu Schaller committed
712

713
        /* As of here, particle force variables will be set. */
714

715
716
        /* Compute variables required for the force loop */
        hydro_prepare_force(p, xp);
717

718
719
        /* The particle force values are now set.  Do _NOT_
           try to read any particle density variables! */
Matthieu Schaller's avatar
Matthieu Schaller committed
720

721
722
        /* Prepare the particle for the force loop over neighbours */
        hydro_reset_acceleration(p);
723
724
      }

725
726
      /* We now need to treat the particles whose smoothing length had not
       * converged again */
727

728
729
730
      /* Re-set the counter for the next loop (potentially). */
      count = redo;
      if (count > 0) {
731

732
733
        /* Climb up the cell hierarchy. */
        for (struct cell *finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
734

735
736
          /* Run through this cell's density interactions. */
          for (struct link *l = finger->density; l != NULL; l = l->next) {
737

738
739
740
741
#ifdef SWIFT_DEBUG_CHECKS
            if (l->t->ti_run < r->e->ti_current)
              error("Density task should have been run.");
#endif
Matthieu Schaller's avatar
Matthieu Schaller committed
742

743
744
745
            /* Self-interaction? */
            if (l->t->type == task_type_self)
              runner_doself_subset_density(r, finger, parts, pid, count);
746

747
748
            /* Otherwise, pair interaction? */
            else if (l->t->type == task_type_pair) {
749

750
751
752
753
754
755
756
              /* Left or right? */
              if (l->t->ci == finger)
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->cj);
              else
                runner_dopair_subset_density(r, finger, parts, pid, count,
                                             l->t->ci);
757

758
            }
759

760
761
762
763
            /* Otherwise, sub-self interaction? */
            else if (l->t->type == task_type_sub_self)
              runner_dosub_subset_density(r, finger, parts, pid, count, NULL,
                                          -1, 1);
764

765
766
767
768
769
770
771
772
773
774
775
            /* Otherwise, sub-pair interaction? */
            else if (l->t->type == task_type_sub_pair) {

              /* Left or right? */
              if (l->t->ci == finger)
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->cj, -1, 1);
              else
                runner_dosub_subset_density(r, finger, parts, pid, count,
                                            l->t->ci, -1, 1);
            }
776
777
778
          }
        }
      }
779
    }
780

781
782
#ifdef SWIFT_DEBUG_CHECKS
    if (count) {
783
      error("Smoothing length failed to converge on %i particles.", count);
784
785
    }
#else
786
    if (count)
787
      error("Smoothing length failed to converge on %i particles.", count);
788
#endif
789

790
791
792
    /* Be clean */
    free(pid);
  }
793

794
  if (timer) TIMER_TOC(timer_do_ghost);
795
796
}

797
/**
798
 * @brief Unskip any tasks associated with active cells.
799
800
 *
 * @param c The cell.
801
 * @param e The engine.
802
 */
803
static void runner_do_unskip(struct cell *c, struct engine *e) {
804

805
806
807
  /* Ignore empty cells. */
  if (c->count == 0 && c->gcount == 0) return;

808
809
  /* Skip inactive cells. */
  if (!cell_is_active(c, e)) return;
810

811
  /* Recurse */
812
813
  if (c->split) {
    for (int k = 0; k < 8; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
814
      if (c->progeny[k] != NULL) {
Matthieu Schaller's avatar
Matthieu Schaller committed
815
        struct cell *cp = c->progeny[k];
816
        runner_do_unskip(cp, e);
817
818
819
      }
    }
  }
820
821

  /* Unskip any active tasks. */
822
823
  const int forcerebuild = cell_unskip_tasks(c, &e->sched);
  if (forcerebuild) atomic_inc(&e->forcerebuild);
824
}
825

826
/**
827
 * @brief Mapper function to unskip active tasks.
828
829
830
831
832
 *
 * @param map_data An array of #cell%s.
 * @param num_elements Chunk size.
 * @param extra_data Pointer to an #engine.
 */
833
834
void runner_do_unskip_mapper(void *map_data, int num_elements,
                             void *extra_data) {
835

836
837
  struct engine *e = (struct engine *)extra_data;
  struct cell *cells = (struct cell *)map_data;
838

839
840
  for (int ind = 0; ind < num_elements; ind++) {
    struct cell *c = &cells[ind];
841
    if (c != NULL) runner_do_unskip(c, e);
842
  }
843
}
844
/**
845
 * @brief Drift all part in a cell.
846
847
848
849
850
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
851
void runner_do_drift_part(struct runner *r, struct cell *c, int timer) {
852

853
  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
854

855
  cell_drift_part(c, r->e);
856

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  if (timer) TIMER_TOC(timer_drift_part);
}

/**
 * @brief Drift all gpart in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
void runner_do_drift_gpart(struct runner *r, struct cell *c, int timer) {

  TIMER_TIC;

  cell_drift_gpart(c, r->e);

  if (timer) TIMER_TOC(timer_drift_gpart);
874
}
875

876
877
878
879
880
881
882
/**
 * @brief Perform the first half-kick on all the active particles in a cell.
 *
 * @param r The runner thread.
 * @param c The cell.
 * @param timer Are we timing this ?
 */
883
void runner_do_kick1(struct runner *r, struct cell *c, int timer) {
884

885
886
887
888
  const struct engine *e = r->e;
  struct part *restrict parts = c->parts;
  struct xpart *restrict xparts = c->xparts;
  struct gpart *restrict gparts = c->gparts;
889
  struct spart *restrict sparts = c->sparts;
890
891
  const int count = c->count;
  const int gcount = c->gcount;
892
  const int scount = c->scount;
893
  const integertime_t ti_current = e->ti_current;
894
  const double timeBase = e->timeBase;
895

896
897
898
  TIMER_TIC;

  /* Anything to do here? */
899
  if (!cell_is_starting(c, e)) return;
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

  /* Recurse? */
  if (c->split) {
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) runner_do_kick1(r, c->progeny[k], 0);
  } else {

    /* Loop over the parts in this cell. */
    for (int k = 0; k < count; k++) {

      /* Get a handle on the part. */
      struct part *restrict p = &parts[k];
      struct xpart *restrict xp = &xparts[k];

      /* If particle needs to be kicked */
915
      if (part_is_starting(p, e)) {
916
917
918

        const integertime_t ti_step = get_integer_timestep(p->time_bin);
        const integertime_t ti_begin =
919
            get_integer_time_begin(ti_current + 1, p->time_bin);