space.c 36.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  /* Get the relative distance between the pairs, wrapping. */
101
102
103
  const int periodic = s->periodic;
  double dx[3];
  for (int k = 0; k < 3; k++) {
104
105
106
107
108
109
110
111
112
113
114
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
115
  int sid = 0;
116
117
118
119
120
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
121
    const cell *temp = *ci;
122
123
124
125
126
127
128
129
130
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
131

132
/**
133
 * @brief Recursively dismantle a cell tree.
134
135
 *
 */
136
137
138
139

void space_rebuild_recycle(struct space *s, struct cell *c) {

  if (c->split)
140
    for (int k = 0; k < 8; k++)
141
142
143
144
145
146
147
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

148
/**
149
 * @brief Re-build the cell grid.
150
 *
151
152
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
153
 * @param verbose Print messages to stdout or not.
154
 */
155

156
void space_regrid(struct space *s, double cell_max, int verbose) {
157

158
159
  float h_max = s->cell_min / kernel_gamma / space_stretch;
  const size_t nr_parts = s->nr_parts;
160
  struct cell *restrict c;
161
  ticks tic = getticks();
162
163
164
165

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
166
    for (int k = 0; k < s->nr_cells; k++) {
167
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
168
    }
169
  } else {
170
    for (int k = 0; k < nr_parts; k++) {
171
172
173
174
175
176
177
178
179
180
181
182
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
183
      error("Failed to aggregate the rebuild flag across nodes.");
184
185
186
    h_max = buff;
  }
#endif
187
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
188
189

  /* Get the new putative cell dimensions. */
190
191
  int cdim[3]
  for (int k = 0; k < 3; k++)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
214
      for (int k = 0; k < s->nr_cells; k++) {
215
216
217
218
219
220
221
222
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
223
    for (int k = 0; k < 3; k++) {
224
225
226
227
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
228
    const float dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));
229
230
231
232
233
234
235
236
237
238
239

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
240
241
242
    for (int i = 0; i < cdim[0]; i++)
      for (int j = 0; j < cdim[1]; j++)
        for (int k = 0; k < cdim[2]; k++) {
243
244
245
246
247
248
249
250
251
252
253
254
255
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
256
        }
257
258

    /* Be verbose about the change. */
259
260
261
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
262
263
264
    fflush(stdout);

  } /* re-build upper-level cells? */
265
266
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
267
268
269
270
271

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
272
    for (int k = 0; k < s->nr_cells; k++) {
273
274
275
276
277
278
279
280
281
282
283
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
284
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
285
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
287
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
288
      s->cells[k].super = &s->cells[k];
289
    }
290
291
    s->maxdepth = 0;
  }
292
293
294
295

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
296
}
297
298
299
300
301
302

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
303
 * @param verbose Print messages to stdout or not
304
305
 *
 */
306

307
void space_rebuild(struct space *s, double cell_max, int verbose) {
308

309
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
310
  struct cell *restrict c, *restrict cells;
311
  struct part *restrict p;
312
  size_t *ind;
313
  double ih[3], dim[3];
314
  ticks tic = getticks();
315
316
317
318
319

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
320
  space_regrid(s, cell_max, verbose);
321
322
323
324
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
325
326
  const size_t ind_size = s->size_parts;
  if ((ind = (size_t *)malloc(sizeof(size_t) * ind_size)) == NULL)
327
328
329
330
331
332
333
334
335
336
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
337
  for (k = 0; k < nr_parts; k++) {
338
    p = &s->parts[k];
339
340
341
342
343
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
344
    ind[k] =
345
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
346
    cells[ind[k]].count++;
347
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
348
349
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
350
351
352
353

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
354
355
356
357
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
358
359
360
361
362
363
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
364
365
366
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
367
368
    }

369
370
371
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
372
373
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
374
375

  /* Re-allocate the index array if needed.. */
376
  if (s->nr_parts > ind_size) {
377
378
    size_t *ind_new;
    if ((ind_new = (size_t *)malloc(sizeof(size_t) * s->nr_parts)) == NULL)
379
      error("Failed to allocate temporary particle indices.");
380
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
381
382
    free(ind);
    ind = ind_new;
383
384
385
  }

  /* Assign each particle to its cell. */
386
  for (k = nr_parts; k < s->nr_parts; k++) {
387
    p = &s->parts[k];
388
    ind[k] =
389
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
390
391
392
393
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
394
  }
395
  nr_parts = s->nr_parts;
396
397
398
#endif

  /* Sort the parts according to their cells. */
399
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
400
401

  /* Re-link the gparts. */
402
  for (k = 0; k < nr_parts; k++)
403
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
404

405
  /* Verify space_sort_struct. */
406
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
407
      if ( ind[k-1] > ind[k] ) {
408
409
          error( "Sort failed!" );
          }
410
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
411
412
413
414
415
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
416
  free(ind);
417
418
419

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
420
  if ((ind = (size_t *)malloc(sizeof(size_t) * s->size_gparts)) == NULL)
421
422
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
423
    struct gpart *gp = &s->gparts[k];
424
425
426
427
428
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
429
    ind[k] =
430
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
431
    cells[ind[k]].gcount++;
432
  }
433
  // message( "getting particle indices took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
434
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
435
436
437
438

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
439
  space_gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
440
441
442

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
443
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
444
445

  /* We no longer need the indices as of here. */
446
  free(ind);
447
448
449

  /* Hook the cells up to the parts. */
  // tic = getticks();
450
451
452
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
453
454
455
456
457
458
459
460
461
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
462
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
463
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
464
465
466

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
486
487
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
488
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
489

490
491
492
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
493
}
494

495
/**
496
497
 * @brief Sort the particles and condensed particles according to the given
 *indices.
498
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
499
 * @param s The #space.
500
501
502
503
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
504
 * @param verbose Are we talkative ?
505
 */
506

507
void space_parts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
508
509
510
511
512
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
513
514
515
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
516
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
517
518
519
520
521
522
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

523
  /* Add the first interval. */
524
525
526
527
528
529
530
531
532
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

533
  /* Launch the sorting tasks. */
534
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
535
536

  /* Verify space_sort_struct. */
537
  /* for (int i = 1; i < N; i++)
538
    if (ind[i - 1] > ind[i])
539
540
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
541
542
            ind[i], min, max);
  message("Sorting succeeded."); */
543

544
  /* Clean up. */
545
  free(space_sort_struct.stack);
546
547
548
549

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
550
}
551

552
void space_do_parts_sort() {
553

554
  /* Pointers to the sorting data. */
555
  size_t *ind = space_sort_struct.ind;
556
557
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
558

559
  /* Main loop. */
560
  while (space_sort_struct.waiting) {
561

562
    /* Grab an interval off the queue. */
563
564
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
565

566
    /* Wait for the entry to be ready, or for the sorting do be done. */
567
568
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
569

570
    /* Get the stack entry. */
571
572
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
573
574
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
575
    space_sort_struct.stack[qid].ready = 0;
576

577
578
    /* Loop over sub-intervals. */
    while (1) {
579

580
      /* Bring beer. */
581
      const int pivot = (min + max) / 2;
582
583
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
584
585

      /* One pass of QuickSort's partitioning. */
586
587
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
588
589
590
591
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
592
          size_t temp_i = ind[ii];
593
594
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
595
          struct part temp_p = parts[ii];
596
597
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
598
          struct xpart temp_xp = xparts[ii];
599
600
601
602
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
603

604
      /* Verify space_sort_struct. */
605
606
607
608
609
610
611
612
613
614
615
616
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
617
618
619
620
621
622

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
623
624
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
625
626
          while (space_sort_struct.stack[qid].ready)
            ;
627
628
629
630
631
632
633
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
634
          space_sort_struct.stack[qid].ready = 1;
635
        }
636

637
638
639
640
641
642
643
644
645
646
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
647
        if (pivot + 1 < max) {
648
649
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
650
651
          while (space_sort_struct.stack[qid].ready)
            ;
652
653
654
655
656
657
658
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
659
          space_sort_struct.stack[qid].ready = 1;
660
        }
661

662
663
664
665
666
667
668
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
669

670
671
    } /* loop over sub-intervals. */

672
    atomic_dec(&space_sort_struct.waiting);
673
674

  } /* main loop. */
675
676
}

677
void space_gparts_sort(struct gpart *gparts, size_t *ind, size_t N, int min,
678
                       int max) {
679
680

  struct qstack {
681
682
    volatile size_t i, j;
    volatile int min, max;
683
684
685
686
687
688
689
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
690
  ptrdiff_t i, ii, j, jj, temp_i;
691
  int qid;
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

713
714
  /* Main loop. */
  while (waiting > 0) {
715

716
717
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
718

719
720
721
722
723
724
725
726
727
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
728

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
747

748
      /* Verify space_sort_struct. */
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
775

776
777
778
779
780
781
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
782

783
784
785
      } else {

        /* Recurse on the right? */
786
        if (pivot + 1 < max) {
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
809

810
  /* Verify space_sort_struct. */
811
812
813
814
815
816
817
818
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
819

Pedro Gonnet's avatar
Pedro Gonnet committed
820
/**
821
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
822
823
 */

824
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
825

826
827
828
829
830
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
831

832
833
834
/**
 * @brief Map a function to all particles in a cell recursively.
 *
835
 * @param c The #cell we are working in.
836
837
838
839
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
840
841
842
843
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
844
845
846
847
848
849

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
850

851
852
853
854
855
856
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
857
/**
858
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
859
860
 *
 * @param s The #space we are working in.
861
862
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
863
864
 */

865
866
867
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
868

869
870
  int cid = 0;

871
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
872
873
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
874
}
875

876
877
878
879
880
881
882
883
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
884
885
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
907
908
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
909
910
911
912
913
914
915
916

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

917
918
919
/**
 * @brief Map a function to all particles in a cell recursively.
 *
920
 * @param c The #cell we are working in.
921
922
923
924
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
925

Pedro Gonnet's avatar
Pedro Gonnet committed
926
927
928
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
929

930
931
932
933
934
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
935
936
937
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

938
939
  /* No progeny? */
  if (full || !c->split) fun(c, data);
940
}
Pedro Gonnet's avatar
Pedro Gonnet committed
941
942

/**
943
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
944
945
 *
 * @param s The #space we are working in.
946
 * @param full Map to all cells, including cells with sub-cells.
947
948
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
949
 */
950

951
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
952
                          void (*fun)(struct cell *c, void *data), void *data) {
953

954
  int cid = 0;
955

956
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
957
958
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
959
}
960

Pedro Gonnet's avatar
Pedro Gonnet committed
961
962
963
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
964

965
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
966

967
968
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
969

970
971
972
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
973
974
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
975
}
Pedro Gonnet's avatar
Pedro Gonnet committed
976

977
978
979
980
981
982
983
984
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
985
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
986
                         void (*fun)(struct cell *c, void *data), void *data) {
987

988
  int cid = 0;
989
990

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
991
992
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
993
}
Pedro Gonnet's avatar
Pedro Gonnet committed
994
995
996
997
998
999
1000

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1001

1002
void space_do_split(struct space *s, struct cell *c) {
1003
1004

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
1005
1006
  float h, h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_end;
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1053
        space_do_split(s, c->progeny[k]);
1054
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1055
1056
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1057
1058
1059
1060
1061
1062
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1063
1064
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
1086
      ti_end = p->ti_end;
1087
      if (h > h_max) h_max = h;
1088
1089
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1090
    }
1091
    c->h_max = h_max;
1092
1093
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1094
  }
1095

1096
  /* Set ownership according to the start of the parts array. */
1097
1098
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1099

Pedro Gonnet's avatar
Pedro Gonnet committed
1100
1101
1102
1103
1104
1105
1106
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120 </