runner.c 30.4 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
18
 ******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19

Pedro Gonnet's avatar
Pedro Gonnet committed
20
21
/* Config parameters. */
#include "../config.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
22
23
24
25

/* Some standard headers. */
#include <float.h>
#include <limits.h>
26
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
27

28
29
/* MPI headers. */
#ifdef WITH_MPI
30
#include <mpi.h>
31
32
#endif

33
34
35
/* This object's header. */
#include "runner.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
36
/* Local headers. */
37
#include "atomic.h"
38
#include "const.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
39
#include "engine.h"
40
#include "error.h"
41
42
43
44
#include "scheduler.h"
#include "space.h"
#include "task.h"
#include "timers.h"
45
46
#include "hydro.h"
#include "gravity.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
47

48
/* Orientation of the cell pairs */
49
50
51
52
53
54
55
56
57
58
59
60
61
62
const float runner_shift[13 * 3] = {
    5.773502691896258e-01, 5.773502691896258e-01,  5.773502691896258e-01,
    7.071067811865475e-01, 7.071067811865475e-01,  0.0,
    5.773502691896258e-01, 5.773502691896258e-01,  -5.773502691896258e-01,
    7.071067811865475e-01, 0.0,                    7.071067811865475e-01,
    1.0,                   0.0,                    0.0,
    7.071067811865475e-01, 0.0,                    -7.071067811865475e-01,
    5.773502691896258e-01, -5.773502691896258e-01, 5.773502691896258e-01,
    7.071067811865475e-01, -7.071067811865475e-01, 0.0,
    5.773502691896258e-01, -5.773502691896258e-01, -5.773502691896258e-01,
    0.0,                   7.071067811865475e-01,  7.071067811865475e-01,
    0.0,                   1.0,                    0.0,
    0.0,                   7.071067811865475e-01,  -7.071067811865475e-01,
    0.0,                   0.0,                    1.0, };
63
64

/* Does the axis need flipping ? */
65
66
const char runner_flip[27] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
Pedro Gonnet's avatar
Pedro Gonnet committed
67

68
/* Import the density loop functions. */
69
70
71
#define FUNCTION density
#include "runner_doiact.h"

72
/* Import the force loop functions. */
73
74
75
76
#undef FUNCTION
#define FUNCTION force
#include "runner_doiact.h"

77
78
79
/* Import the gravity loop functions. */
#include "runner_doiact_grav.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
80
81
82
83
84
85
/**
 * @brief Sort the entries in ascending order using QuickSort.
 *
 * @param sort The entries
 * @param N The number of entries.
 */
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

void runner_dosort_ascending(struct entry *sort, int N) {

  struct {
    short int lo, hi;
  } qstack[10];
  int qpos, i, j, lo, hi, imin;
  struct entry temp;
  float pivot;

  /* Sort parts in cell_i in decreasing order with quicksort */
  qstack[0].lo = 0;
  qstack[0].hi = N - 1;
  qpos = 0;
  while (qpos >= 0) {
    lo = qstack[qpos].lo;
    hi = qstack[qpos].hi;
    qpos -= 1;
    if (hi - lo < 15) {
      for (i = lo; i < hi; i++) {
        imin = i;
        for (j = i + 1; j <= hi; j++)
          if (sort[j].d < sort[imin].d) imin = j;
        if (imin != i) {
          temp = sort[imin];
          sort[imin] = sort[i];
          sort[i] = temp;
        }
      }
    } else {
      pivot = sort[(lo + hi) / 2].d;
      i = lo;
      j = hi;
      while (i <= j) {
        while (sort[i].d < pivot) i++;
        while (sort[j].d > pivot) j--;
        if (i <= j) {
          if (i < j) {
            temp = sort[i];
            sort[i] = sort[j];
            sort[j] = temp;
          }
          i += 1;
          j -= 1;
        }
      }
      if (j > (lo + hi) / 2) {
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
Pedro Gonnet's avatar
Pedro Gonnet committed
142
        }
143
144
145
146
147
148
149
150
151
152
153
154
      } else {
        if (i < hi) {
          qpos += 1;
          qstack[qpos].lo = i;
          qstack[qpos].hi = hi;
        }
        if (lo < j) {
          qpos += 1;
          qstack[qpos].lo = lo;
          qstack[qpos].hi = j;
        }
      }
Pedro Gonnet's avatar
Pedro Gonnet committed
155
    }
156
157
158
  }
}

Pedro Gonnet's avatar
Pedro Gonnet committed
159
160
161
162
163
/**
 * @brief Sort the particles in the given cell along all cardinal directions.
 *
 * @param r The #runner.
 * @param c The #cell.
164
 * @param flags Cell flag.
165
166
 * @param clock Flag indicating whether to record the timing or not, needed
 *      for recursive calls.
Pedro Gonnet's avatar
Pedro Gonnet committed
167
 */
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

void runner_dosort(struct runner *r, struct cell *c, int flags, int clock) {

  struct entry *finger;
  struct entry *fingers[8];
  struct part *parts = c->parts;
  struct entry *sort;
  int j, k, count = c->count;
  int i, ind, off[8], inds[8], temp_i, missing;
  // float shift[3];
  float buff[8], px[3];

  TIMER_TIC

  /* Clean-up the flags, i.e. filter out what's already been sorted. */
  flags &= ~c->sorted;
  if (flags == 0) return;

  /* start by allocating the entry arrays. */
  if (c->sort == NULL || c->sortsize < count) {
    if (c->sort != NULL) free(c->sort);
    c->sortsize = count * 1.1;
    if ((c->sort = (struct entry *)malloc(sizeof(struct entry) *
                                          (c->sortsize + 1) * 13)) == NULL)
      error("Failed to allocate sort memory.");
  }
  sort = c->sort;

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
    for (k = 0; k < 8; k++) {
      if (c->progeny[k] == NULL) continue;
      missing = flags & ~c->progeny[k]->sorted;
      if (missing) runner_dosort(r, c->progeny[k], missing, 0);
    }

    /* Loop over the 13 different sort arrays. */
    for (j = 0; j < 13; j++) {

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
      for (off[0] = 0, k = 1; k < 8; k++)
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->count;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
      for (k = 0; k < 8; k++) {
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->count > 0) {
          fingers[k] = &c->progeny[k]->sort[j * (c->progeny[k]->count + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
      for (i = 0; i < 7; i++)
        for (k = i + 1; k < 8; k++)
          if (buff[inds[k]] < buff[inds[i]]) {
            temp_i = inds[i];
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &sort[j * (count + 1)];
      for (ind = 0; ind < count; ind++) {

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
        for (k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
          temp_i = inds[k - 1];
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
Pedro Gonnet's avatar
Pedro Gonnet committed
256
        }
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
      } /* Merge. */

      /* Add a sentinel. */
      sort[j * (count + 1) + count].d = FLT_MAX;
      sort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
      c->sorted |= (1 << j);

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

    /* Fill the sort array. */
    for (k = 0; k < count; k++) {
      px[0] = parts[k].x[0];
      px[1] = parts[k].x[1];
      px[2] = parts[k].x[2];
      for (j = 0; j < 13; j++)
        if (flags & (1 << j)) {
          sort[j * (count + 1) + k].i = k;
          sort[j * (count + 1) + k].d = px[0] * runner_shift[3 * j + 0] +
                                        px[1] * runner_shift[3 * j + 1] +
                                        px[2] * runner_shift[3 * j + 2];
        }
286
    }
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    /* Add the sentinel and sort. */
    for (j = 0; j < 13; j++)
      if (flags & (1 << j)) {
        sort[j * (count + 1) + count].d = FLT_MAX;
        sort[j * (count + 1) + count].i = 0;
        runner_dosort_ascending(&sort[j * (count + 1)], count);
        c->sorted |= (1 << j);
      }
  }

/* Verify the sorting. */
/* for ( j = 0 ; j < 13 ; j++ ) {
    if ( !( flags & (1 << j) ) )
        continue;
    finger = &sort[ j*(count + 1) ];
    for ( k = 1 ; k < count ; k++ ) {
        if ( finger[k].d < finger[k-1].d )
            error( "Sorting failed, ascending array." );
        if ( finger[k].i >= count )
            error( "Sorting failed, indices borked." );
308
        }
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    } */

#ifdef TIMER_VERBOSE
  message(
      "runner %02i: %i parts at depth %i (flags = %i%i%i%i%i%i%i%i%i%i%i%i%i) "
      "took %.3f ms.",
      r->id, count, c->depth, (flags & 0x1000) >> 12, (flags & 0x800) >> 11,
      (flags & 0x400) >> 10, (flags & 0x200) >> 9, (flags & 0x100) >> 8,
      (flags & 0x80) >> 7, (flags & 0x40) >> 6, (flags & 0x20) >> 5,
      (flags & 0x10) >> 4, (flags & 0x8) >> 3, (flags & 0x4) >> 2,
      (flags & 0x2) >> 1, (flags & 0x1) >> 0,
      ((double)TIMER_TOC(timer_dosort)) / CPU_TPS * 1000);
  fflush(stdout);
#else
  if (clock) TIMER_TOC(timer_dosort);
#endif
}

void runner_dogsort(struct runner *r, struct cell *c, int flags, int clock) {

  struct entry *finger;
  struct entry *fingers[8];
  struct gpart *gparts = c->gparts;
  struct entry *gsort;
  int j, k, count = c->gcount;
  int i, ind, off[8], inds[8], temp_i, missing;
  // float shift[3];
  float buff[8], px[3];

  TIMER_TIC

  /* Clean-up the flags, i.e. filter out what's already been sorted. */
  flags &= ~c->gsorted;
  if (flags == 0) return;

  /* start by allocating the entry arrays. */
  if (c->gsort == NULL || c->gsortsize < count) {
    if (c->gsort != NULL) free(c->gsort);
    c->gsortsize = count * 1.1;
    if ((c->gsort = (struct entry *)malloc(sizeof(struct entry) *
                                           (c->gsortsize + 1) * 13)) == NULL)
      error("Failed to allocate sort memory.");
  }
  gsort = c->gsort;

  /* Does this cell have any progeny? */
  if (c->split) {

    /* Fill in the gaps within the progeny. */
    for (k = 0; k < 8; k++) {
      if (c->progeny[k] == NULL) continue;
      missing = flags & ~c->progeny[k]->gsorted;
      if (missing) runner_dogsort(r, c->progeny[k], missing, 0);
    }

    /* Loop over the 13 different sort arrays. */
    for (j = 0; j < 13; j++) {

      /* Has this sort array been flagged? */
      if (!(flags & (1 << j))) continue;

      /* Init the particle index offsets. */
      for (off[0] = 0, k = 1; k < 8; k++)
        if (c->progeny[k - 1] != NULL)
          off[k] = off[k - 1] + c->progeny[k - 1]->gcount;
        else
          off[k] = off[k - 1];

      /* Init the entries and indices. */
      for (k = 0; k < 8; k++) {
        inds[k] = k;
        if (c->progeny[k] != NULL && c->progeny[k]->gcount > 0) {
          fingers[k] = &c->progeny[k]->gsort[j * (c->progeny[k]->gcount + 1)];
          buff[k] = fingers[k]->d;
          off[k] = off[k];
        } else
          buff[k] = FLT_MAX;
      }

      /* Sort the buffer. */
      for (i = 0; i < 7; i++)
        for (k = i + 1; k < 8; k++)
          if (buff[inds[k]] < buff[inds[i]]) {
            temp_i = inds[i];
            inds[i] = inds[k];
            inds[k] = temp_i;
          }

      /* For each entry in the new sort list. */
      finger = &gsort[j * (count + 1)];
      for (ind = 0; ind < count; ind++) {

        /* Copy the minimum into the new sort array. */
        finger[ind].d = buff[inds[0]];
        finger[ind].i = fingers[inds[0]]->i + off[inds[0]];

        /* Update the buffer. */
        fingers[inds[0]] += 1;
        buff[inds[0]] = fingers[inds[0]]->d;

        /* Find the smallest entry. */
        for (k = 1; k < 8 && buff[inds[k]] < buff[inds[k - 1]]; k++) {
          temp_i = inds[k - 1];
          inds[k - 1] = inds[k];
          inds[k] = temp_i;
414
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
      } /* Merge. */

      /* Add a sentinel. */
      gsort[j * (count + 1) + count].d = FLT_MAX;
      gsort[j * (count + 1) + count].i = 0;

      /* Mark as sorted. */
      c->gsorted |= (1 << j);

    } /* loop over sort arrays. */

  } /* progeny? */

  /* Otherwise, just sort. */
  else {

    /* Fill the sort array. */
    for (k = 0; k < count; k++) {
      px[0] = gparts[k].x[0];
      px[1] = gparts[k].x[1];
      px[2] = gparts[k].x[2];
      for (j = 0; j < 13; j++)
        if (flags & (1 << j)) {
          gsort[j * (count + 1) + k].i = k;
          gsort[j * (count + 1) + k].d = px[0] * runner_shift[3 * j + 0] +
                                         px[1] * runner_shift[3 * j + 1] +
                                         px[2] * runner_shift[3 * j + 2];
        }
Pedro Gonnet's avatar
Pedro Gonnet committed
444
    }
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

    /* Add the sentinel and sort. */
    for (j = 0; j < 13; j++)
      if (flags & (1 << j)) {
        gsort[j * (count + 1) + count].d = FLT_MAX;
        gsort[j * (count + 1) + count].i = 0;
        runner_dosort_ascending(&gsort[j * (count + 1)], count);
        c->gsorted |= (1 << j);
      }
  }

/* Verify the sorting. */
/* for ( j = 0 ; j < 13 ; j++ ) {
    if ( !( flags & (1 << j) ) )
        continue;
    finger = &c->gsort[ j*(count + 1) ];
    for ( k = 1 ; k < count ; k++ ) {
        if ( finger[k].d < finger[k-1].d )
            error( "Sorting failed, ascending array." );
        if ( finger[k].i < 0 || finger[k].i >= count )
            error( "Sorting failed, indices borked." );
        }
    } */

#ifdef TIMER_VERBOSE
  message(
      "runner %02i: %i parts at depth %i (flags = %i%i%i%i%i%i%i%i%i%i%i%i%i) "
      "took %.3f ms.",
      r->id, count, c->depth, (flags & 0x1000) >> 12, (flags & 0x800) >> 11,
      (flags & 0x400) >> 10, (flags & 0x200) >> 9, (flags & 0x100) >> 8,
      (flags & 0x80) >> 7, (flags & 0x40) >> 6, (flags & 0x20) >> 5,
      (flags & 0x10) >> 4, (flags & 0x8) >> 3, (flags & 0x4) >> 2,
      (flags & 0x2) >> 1, (flags & 0x1) >> 0,
      ((double)TIMER_TOC(timer_dosort)) / CPU_TPS * 1000);
  fflush(stdout);
#else
  if (clock) TIMER_TOC(timer_dosort);
#endif
}

485
486
487
488
489
490
491
/**
 * @brief Initialize the particles before the density calculation
 *
 * @param r The runner thread.
 * @param c The cell.
 */

492
void runner_doinit(struct runner *r, struct cell *c, int timer) {
493
494

  struct part *p, *parts = c->parts;
Matthieu Schaller's avatar
Matthieu Schaller committed
495
496
  const int count = c->count;
  const float t_end = r->e->time;
497
498

  TIMER_TIC;
Matthieu Schaller's avatar
Matthieu Schaller committed
499
  
500
501
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
502
    for (int k = 0; k < 8; k++)
503
      if (c->progeny[k] != NULL) runner_doinit(r, c->progeny[k], 0);
504
505
    return;
  }
506
  else {
Matthieu Schaller's avatar
Matthieu Schaller committed
507
  
508
509
510
511
512
513
514
515
516
517
518
    /* Loop over the parts in this cell. */
    for (int i = 0; i < count; i++) {
      
      /* Get a direct pointer on the part. */
      p = &parts[i];
      
      if (p->t_end <= t_end) {
	
	/* Get ready for a density calculation */
	hydro_init_part(p);
      }
519
520
    }
  }
521
522
523
524
525
526
527
528
529
530
531
532

  if (timer) {
#ifdef TIMER_VERBOSE
    message("runner %02i: %i parts at depth %i took %.3f ms.", r->id, c->count,
            c->depth, ((double)TIMER_TOC(timer_init)) / CPU_TPS * 1000);
    fflush(stdout);
#else
    TIMER_TOC(timer_init);
#endif
  }

  
533
534
}

535
536
537
/**
 * @brief Intermediate task between density and force
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
538
 * @param r The runner thread.
539
 * @param c The cell.
540
 */
541
542
543
544

void runner_doghost(struct runner *r, struct cell *c) {

  struct part *p, *parts = c->parts;
545
  struct xpart *xp, *xparts = c->xparts;
546
  struct cell *finger;
Matthieu Schaller's avatar
Matthieu Schaller committed
547
  int redo, count = c->count;
548
  int *pid;
549
  float h_corr;
550
551
  float t_end = r->e->time;

552
553
  TIMER_TIC;

554
555
  /* Recurse? */
  if (c->split) {
Matthieu Schaller's avatar
Matthieu Schaller committed
556
    for (int k = 0; k < 8; k++)
557
558
559
560
561
562
563
      if (c->progeny[k] != NULL) runner_doghost(r, c->progeny[k]);
    return;
  }

  /* Init the IDs that have to be updated. */
  if ((pid = (int *)alloca(sizeof(int) * count)) == NULL)
    error("Call to alloca failed.");
Matthieu Schaller's avatar
Matthieu Schaller committed
564
  for (int k = 0; k < count; k++) pid[k] = k;
565
566

  /* While there are particles that need to be updated... */
Matthieu Schaller's avatar
Matthieu Schaller committed
567
  for (int num_reruns = 0; count > 0 && num_reruns < const_smoothing_max_iter;
Matthieu Schaller's avatar
Matthieu Schaller committed
568
       num_reruns++) {
569
570
571

    /* Reset the redo-count. */
    redo = 0;
572

573
    /* Loop over the parts in this cell. */
Matthieu Schaller's avatar
Matthieu Schaller committed
574
    for (int i = 0; i < count; i++) {
575
576
577

      /* Get a direct pointer on the part. */
      p = &parts[pid[i]];
578
      xp = &xparts[pid[i]];
579
580

      /* Is this part within the timestep? */
581
      if (p->t_end <= t_end) {
582

583
584
	/* Finish the density calculation */
	hydro_end_density(p);
585
586

        /* If no derivative, double the smoothing length. */
587
        if (p->density.wcount_dh == 0.0f) h_corr = p->h;
588
589
590

        /* Otherwise, compute the smoothing length update (Newton step). */
        else {
591
          h_corr = (kernel_nwneigh - p->density.wcount) / p->density.wcount_dh;
592
593

          /* Truncate to the range [ -p->h/2 , p->h ]. */
594
595
          h_corr = fminf(h_corr, p->h);
          h_corr = fmaxf(h_corr, -p->h * 0.5f);
Pedro Gonnet's avatar
Pedro Gonnet committed
596
        }
597
598

        /* Did we get the right number density? */
599
600
        if (p->density.wcount > kernel_nwneigh + const_delta_nwneigh ||
           p->density. wcount < kernel_nwneigh - const_delta_nwneigh) {
601
602
603
604

          /* Ok, correct then */
          p->h += h_corr;

605
          /* Flag for another round of fun */
606
607
          pid[redo] = pid[i];
          redo += 1;
608
609
610
611
612

	  /* Re-initialise everything */
	  hydro_init_part(p);

	  /* Off we go ! */
613
          continue;
614
615
        }

Matthieu Schaller's avatar
Matthieu Schaller committed
616
        /* We now have a particle whose smoothing length has converged */
617

618
619
620
        /* As of here, particle force variables will be set. Do _NOT_
           try to read any particle density variables! */

621
622
	/* Compute variables required for the force loop */
	hydro_prepare_force(p, xp);
Matthieu Schaller's avatar
Matthieu Schaller committed
623
	
624
625
626
	/* Prepare the particle for the force loop over neighbours */
	hydro_reset_acceleration(p);

627
628
629
      }
    }

630
631
632
    /* We now need to treat the particles whose smoothing length had not
     * converged again */

633
634
635
636
637
638
    /* Re-set the counter for the next loop (potentially). */
    count = redo;
    if (count > 0) {

      /* Climb up the cell hierarchy. */
      for (finger = c; finger != NULL; finger = finger->parent) {
Matthieu Schaller's avatar
Matthieu Schaller committed
639

640
641
        /* Run through this cell's density interactions. */
        for (struct link *l = finger->density; l != NULL; l = l->next) {
Matthieu Schaller's avatar
Matthieu Schaller committed
642

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
          /* Self-interaction? */
          if (l->t->type == task_type_self)
            runner_doself_subset_density(r, finger, parts, pid, count);

          /* Otherwise, pair interaction? */
          else if (l->t->type == task_type_pair) {

            /* Left or right? */
            if (l->t->ci == finger)
              runner_dopair_subset_density(r, finger, parts, pid, count,
                                           l->t->cj);
            else
              runner_dopair_subset_density(r, finger, parts, pid, count,
                                           l->t->ci);

          }

          /* Otherwise, sub interaction? */
          else if (l->t->type == task_type_sub) {

            /* Left or right? */
            if (l->t->ci == finger)
              runner_dosub_subset_density(r, finger, parts, pid, count,
                                          l->t->cj, -1, 1);
            else
              runner_dosub_subset_density(r, finger, parts, pid, count,
                                          l->t->ci, -1, 1);
          }
        }
      }
673
    }
674
  }
675

Matthieu Schaller's avatar
Matthieu Schaller committed
676
677
  if (count)
    message("Smoothing length failed to converge on %i particles.", count);
678
679
680
681
682
683
684
685
686
687

#ifdef TIMER_VERBOSE
  message("runner %02i: %i parts at depth %i took %.3f ms.", r->id, c->count,
          c->depth, ((double)TIMER_TOC(timer_doghost)) / CPU_TPS * 1000);
  fflush(stdout);
#else
  TIMER_TOC(timer_doghost);
#endif
}

688
/**
689
 * @brief Drift particles forward in time
690
691
692
 *
 * @param r The runner thread.
 * @param c The cell.
693
 * @param timer Are we timing this ?
694
 */
695
void runner_dodrift(struct runner *r, struct cell *c, int timer) {
696

697
698
  const int nr_parts = c->count;
  const float dt = r->e->time - r->e->timeOld;
699
700
  struct part *restrict p, *restrict parts = c->parts;
  struct xpart *restrict xp, *restrict xparts = c->xparts;
701
  float w;
Matthieu Schaller's avatar
Matthieu Schaller committed
702
  float dx_max = 0.f, h_max = 0.f;
703
  
704
705
  TIMER_TIC

706
707
  /* No children? */
  if (!c->split) {
708

709
    /* Loop over all the particles in the cell */
710
    for (int k = 0; k < nr_parts; k++) {
711

712
713
714
      /* Get a handle on the part. */
      p = &parts[k];
      xp = &xparts[k];
715

716
      /* Get local copies of particle data. */
717
718
      const float h = p->h;
      const float ih = 1.0f / h;
Matthieu Schaller's avatar
Matthieu Schaller committed
719

720
721
722
723
      /* Drift... */
      p->x[0] += xp->v_full[0] * dt;
      p->x[1] += xp->v_full[1] * dt;
      p->x[2] += xp->v_full[2] * dt;
724

725
726
727
728
      /* Predict velocities */
      p->v[0] += p->a[0] * dt;
      p->v[1] += p->a[1] * dt;
      p->v[2] += p->a[2] * dt;
729

730
      /* Predict smoothing length */
731
      w = p->force.h_dt * ih * dt;
732
733
734
735
      if (fabsf(w) < 0.01f) /* 1st order expansion of exp(w) */
	p->h *=
	  1.0f +
	  w * (1.0f + w * (0.5f + w * (1.0f / 6.0f + 1.0f / 24.0f * w)));
736
      else
737
	p->h *= expf(w);
738
      
739
740
741
      /* Predict density */
      w = -3.0f * p->force.h_dt * ih * dt;
      if (fabsf(w) < 0.1f)
742
743
744
	p->rho *=
	  1.0f +
	  w * (1.0f + w * (0.5f + w * (1.0f / 6.0f + 1.0f / 24.0f * w)));
745
      else
746
747
748
749
	p->rho *= expf(w);
      
      /* Predict the values of the extra fields */
      hydro_predict_extra(p, xp, dt);
750

Matthieu Schaller's avatar
Matthieu Schaller committed
751
752
753
754
755
756
757
758
      /* Compute motion since last cell construction */
      const float dx = sqrtf((p->x[0] - xp->x_old[0]) * (p->x[0] - xp->x_old[0]) +
			     (p->x[1] - xp->x_old[1]) * (p->x[1] - xp->x_old[1]) +
			     (p->x[2] - xp->x_old[2]) * (p->x[2] - xp->x_old[2]));
      dx_max = fmaxf(dx_max, dx);

      /* Maximal smoothing length */
      h_max = fmaxf(p->h, h_max);
759
    }
760
  }
761

Matthieu Schaller's avatar
Matthieu Schaller committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
  /* Otherwise, aggregate data from children. */
  else {

    /* Loop over the progeny. */
    for (int k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        struct cell *cp = c->progeny[k];
        runner_dodrift(r, cp, 0);

	dx_max = fmaxf(dx_max, cp->dx_max);
	h_max = fmaxf(h_max, cp->h_max);
      }
  }

  /* Store the values */
  c->h_max = h_max;
  c->dx_max = dx_max;
  
780
781
782
783
784
785
786
787
  if (timer) {
#ifdef TIMER_VERBOSE
    message("runner %02i: %i parts at depth %i took %.3f ms.", r->id, c->count,
            c->depth, ((double)TIMER_TOC(timer_drift)) / CPU_TPS * 1000);
    fflush(stdout);
#else
    TIMER_TOC(timer_drift);
#endif
788
789
  }
}
790

791
792
793
794
795
/**
 * @brief Combined second and first kick for fixed dt.
 *
 * @param r The runner thread.
 * @param c The cell.
796
 * @param timer The timer
797
798
 */

799
800
void runner_dokick(struct runner *r, struct cell *c, int timer) {

801
802
803
  const float dt_max_timeline = r->e->timeEnd - r->e->timeBegin;
  const float global_dt_min = r->e->dt_min, global_dt_max = r->e->dt_max;
  const float t_current = r->e->time;
Matthieu Schaller's avatar
Matthieu Schaller committed
804
  const int count = c->count;
805
  const int is_fixdt = (r->e->policy & engine_policy_fixdt) == engine_policy_fixdt;
Matthieu Schaller's avatar
Matthieu Schaller committed
806
807
808

  float new_dt;
  float t_start, t_end, dt;
809
  float dt_timeline;
Matthieu Schaller's avatar
Matthieu Schaller committed
810
811
812

  int updated = 0;
  float t_end_min = FLT_MAX, t_end_max = 0.f;
813
814
  double ekin = 0.0, epot = 0.0;
  float mom[3] = {0.0f, 0.0f, 0.0f}, ang[3] = {0.0f, 0.0f, 0.0f};
815
  float m, x[3], v_full[3];
816
817
818
819
820
821
822
823
  struct part *restrict p, *restrict parts = c->parts;
  struct xpart *restrict xp, *restrict xparts = c->xparts;

  TIMER_TIC

  /* No children? */
  if (!c->split) {

824
    /* Loop over the particles and kick the active ones. */
Matthieu Schaller's avatar
Matthieu Schaller committed
825
    for (int k = 0; k < count; k++) {
826
827
828
829
830
831

      /* Get a handle on the part. */
      p = &parts[k];
      xp = &xparts[k];

      m = p->mass;
Matthieu Schaller's avatar
Matthieu Schaller committed
832
833
834
      x[0] = p->x[0];
      x[1] = p->x[1];
      x[2] = p->x[2];
835
836

      /* If particle needs to be kicked */
837
      if ( is_fixdt || p->t_end <= t_current ) {
838
839

        /* First, finish the force loop */
840
841
	hydro_end_force(p);
	  
842
	if( is_fixdt ) {
843

844
845
846
847
	  /* Now we have a time step, proceed with the kick */
	  new_dt = global_dt_max;
	  
	} else {
848
	
849
	  /* Compute the next timestep */
850
851
	  const float new_dt_hydro = hydro_compute_timestep(p, xp);
	  const float new_dt_grav = gravity_compute_timestep(p, xp);
852
853
	  
	  new_dt = fminf(new_dt_hydro, new_dt_grav);
854
855
856

	  /* Recover the current timestep */
	  const float current_dt = p->t_end - p->t_begin;
857
858
859
	  
	  /* Limit timestep increase */
	  if (current_dt > 0.0f) new_dt = fminf(new_dt, 2.0f * current_dt);
860
	
861
862
863
	  /* Limit timestep within the allowed range */
	  new_dt = fminf(new_dt, global_dt_max);
	  new_dt = fmaxf(new_dt, global_dt_min);
864
	
865
866
867
868
869
870
871
872
	  /* Put this timestep on the time line */
	  dt_timeline = dt_max_timeline;
	  while (new_dt < dt_timeline) dt_timeline /= 2.;
	  
	  /* Now we have a time step, proceed with the kick */
	  new_dt = dt_timeline;
	}

873
874
875
876
877
878
879
        /* Compute the time step for this kick */
        t_start = 0.5f * (p->t_begin + p->t_end);
        t_end = p->t_end + 0.5f * new_dt;
        dt = t_end - t_start;

        /* Move particle forward in time */
        p->t_begin = p->t_end;
880
        p->t_end = p->t_begin + new_dt;
Matthieu Schaller's avatar
Matthieu Schaller committed
881

882
883
884
885
886
887
888
889
890
891
892
893
        /* Kick particles in momentum space */
        xp->v_full[0] += p->a[0] * dt;
        xp->v_full[1] += p->a[1] * dt;
        xp->v_full[2] += p->a[2] * dt;

        p->v[0] = xp->v_full[0] - 0.5f * new_dt * p->a[0];
        p->v[1] = xp->v_full[1] - 0.5f * new_dt * p->a[1];
        p->v[2] = xp->v_full[2] - 0.5f * new_dt * p->a[2];
      }

      /* Now collect quantities for statistics */

894
895
      v_full[0] = xp->v_full[0];
      v_full[1] = xp->v_full[1];
896
      v_full[2] = xp->v_full[2];
897
898

      /* Collect momentum */
899
900
901
      mom[0] += m * v_full[0];
      mom[1] += m * v_full[1];
      mom[2] += m * v_full[2];
902
903

      /* Collect angular momentum */
904
905
906
      ang[0] += m * (x[1] * v_full[2] - x[2] * v_full[1]);
      ang[1] += m * (x[2] * v_full[0] - x[0] * v_full[2]);
      ang[2] += m * (x[0] * v_full[1] - x[1] * v_full[0]);
907
908

      /* Collect total energy. */
909
910
911
912
913
      ekin += 0.5 * m * (v_full[0] * v_full[0] + v_full[1] * v_full[1] +
                         v_full[2] * v_full[2]);
      epot += m * xp->u_hdt;

      /* Minimal time for next end of time-step */
Matthieu Schaller's avatar
Matthieu Schaller committed
914
915
      t_end_min = fminf(p->t_end, t_end_min);
      t_end_max = fmaxf(p->t_end, t_end_max);
916

Matthieu Schaller's avatar
Matthieu Schaller committed
917
918
      /* Number of updated particles */
      updated++;
919
920
    }

921
922
  }

923
  /* Otherwise, aggregate data from children. */
924
925
926
  else {

    /* Loop over the progeny. */
927
    for (int k = 0; k < 8; k++)
928
929
930
      if (c->progeny[k] != NULL) {
        struct cell *cp = c->progeny[k];
        runner_dokick(r, cp, 0);
Matthieu Schaller's avatar
Matthieu Schaller committed
931

932
933
934
935
936
937
938
939
        ekin += cp->ekin;
        epot += cp->epot;
        mom[0] += cp->mom[0];
        mom[1] += cp->mom[1];
        mom[2] += cp->mom[2];
        ang[0] += cp->ang[0];
        ang[1] += cp->ang[1];
        ang[2] += cp->ang[2];
Matthieu Schaller's avatar
Matthieu Schaller committed
940
941
        t_end_min = fminf(cp->t_end_min, t_end_min);
        t_end_max = fmaxf(cp->t_end_max, t_end_max);
942
943
944
945
946
947
948
949
950
951
952
953
      }
  }

  /* Store the values. */
  c->ekin = ekin;
  c->epot = epot;
  c->mom[0] = mom[0];
  c->mom[1] = mom[1];
  c->mom[2] = mom[2];
  c->ang[0] = ang[0];
  c->ang[1] = ang[1];
  c->ang[2] = ang[2];
954
955
956
  c->t_end_min = t_end_min;
  c->t_end_max = t_end_max;

957
958
959
  if (timer) {
#ifdef TIMER_VERBOSE
    message("runner %02i: %i parts at depth %i took %.3f ms.", r->id, c->count,
960
            c->depth, ((double)TIMER_TOC(timer_kick)) / CPU_TPS * 1000);
961
962
    fflush(stdout);
#else
963
    TIMER_TOC(timer_kick);
964
965
966
#endif
  }
}
967

Pedro Gonnet's avatar
Pedro Gonnet committed
968
969
970
971
972
973
/**
 * @brief The #runner main thread routine.
 *
 * @param data A pointer to this thread's data.
 */

974
975
976
977
978
979
void *runner_main(void *data) {

  struct runner *r = (struct runner *)data;
  struct engine *e = r->e;
  struct scheduler *sched = &e->sched;
  struct task *t = NULL;
980
  struct cell *ci, *cj;
981
982
983
984
985
986
987
988
989
  struct part *parts;
  int k, nr_parts;

  /* Main loop. */
  while (1) {

    /* Wait at the barrier. */
    engine_barrier(e, r->id);

990
991
    /* Re-set the pointer to the previous task, as there is none. */
    struct task* prev = NULL;
992
993
994
995
996
997
998
999
1000

    /* Loop while there are tasks... */
    while (1) {

      /* If there's no old task, try to get a new one. */
      if (t == NULL) {

        /* Get the task. */
        TIMER_TIC
For faster browsing, not all history is shown. View entire blame