cell.c 14.8 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
18
19
20
21
22
23
24
25
26
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
28
29
30
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
31

32
33
/* MPI headers. */
#ifdef WITH_MPI
34
#include <mpi.h>
35
36
#endif

37
38
/* Switch off timers. */
#ifdef TIMER
39
#undef TIMER
40
41
#endif

42
43
44
/* This object's header. */
#include "cell.h"

45
/* Local headers. */
46
#include "atomic.h"
47
#include "error.h"
48
49
#include "space.h"
#include "timers.h"
50

51
52
53
/* Global variables. */
int cell_next_tag = 0;

54
55
56
57
58
59
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */

60
int cell_getsize(struct cell *c) {
61

62
  int k, count = 1;
63

64
65
66
67
68
69
70
71
72
73
  /* Sum up the progeny if split. */
  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

/**
74
75
76
77
78
79
80
81
82
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */

83
84
85
86
87
88
89
int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {

  int k, count = 1;
  struct cell *temp;

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
90
91
  c->t_end_min = pc->t_end_min;
  c->t_end_max = pc->t_end_max;
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  c->count = pc->count;
  c->tag = pc->tag;

  /* Fill the progeny recursively, depth-first. */
  for (k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
118
119
    }

120
121
122
  /* Return the total number of unpacked cells. */
  return count;
}
123

124
125
126
127
128
129
130
131
132
/**
 * @brief Link the cells recursively to the given part array.
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */

133
int cell_link(struct cell *c, struct part *parts) {
134

135
  int k, ind = 0;
136

137
138
139
140
141
142
143
144
145
146
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) ind += cell_link(c->progeny[k], &parts[ind]);

  /* Return the total number of unpacked cells. */
  return c->count;
}
147

148
149
150
151
152
153
154
155
156
157
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */

158
159
160
int cell_pack(struct cell *c, struct pcell *pc) {

  int k, count = 1;
161

162
163
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
Matthieu Schaller's avatar
Matthieu Schaller committed
164
165
  c->t_end_min = pc->t_end_min;
  c->t_end_max = pc->t_end_max;
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  pc->count = c->count;
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;

  /* Fill in the progeny, depth-first recursion. */
  for (k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
  return count;
}
180

181
182
183
184
185
186
/**
 * @brief Lock a cell and hold its parents.
 *
 * @param c The #cell.
 */

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
int cell_locktree(struct cell *c) {

  struct cell *finger, *finger2;
  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (finger2 = c->parent; finger2 != finger; finger2 = finger2->parent)
      __sync_fetch_and_sub(&finger2->hold, 1);

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

int cell_glocktree(struct cell *c) {

  struct cell *finger, *finger2;
  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
    __sync_fetch_and_add(&finger->ghold, 1);

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (finger2 = c->parent; finger2 != finger; finger2 = finger2->parent)
      __sync_fetch_and_sub(&finger2->ghold, 1);

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
300

301
/**
302
 * @brief Unlock a cell's parents.
303
304
305
 *
 * @param c The #cell.
 */
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

void cell_unlocktree(struct cell *c) {

  struct cell *finger;
  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (finger = c->parent; finger != NULL; finger = finger->parent)
    __sync_fetch_and_sub(&finger->hold, 1);

  TIMER_TOC(timer_locktree);
}

void cell_gunlocktree(struct cell *c) {

  struct cell *finger;
  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (finger = c->parent; finger != NULL; finger = finger->parent)
    __sync_fetch_and_sub(&finger->ghold, 1);

  TIMER_TOC(timer_locktree);
}

337
338
339
340
341
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
 */
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

void cell_split(struct cell *c) {

  int i, j, k, count = c->count, gcount = c->gcount;
  struct part temp, *parts = c->parts;
  struct xpart xtemp, *xparts = c->xparts;
  struct gpart gtemp, *gparts = c->gparts;
  int left[8], right[8];
  double pivot[3];

  /* Init the pivots. */
  for (k = 0; k < 3; k++) pivot[k] = c->loc[k] + c->h[k] / 2;

  /* Split along the x-axis. */
  i = 0;
  j = count - 1;
  while (i <= j) {
    while (i <= count - 1 && parts[i].x[0] <= pivot[0]) i += 1;
    while (j >= 0 && parts[j].x[0] > pivot[0]) j -= 1;
    if (i < j) {
      temp = parts[i];
      parts[i] = parts[j];
      parts[j] = temp;
      xtemp = xparts[i];
      xparts[i] = xparts[j];
      xparts[j] = xtemp;
    }
  }
  /* for ( k = 0 ; k <= j ; k++ )
      if ( parts[k].x[0] > pivot[0] )
          error( "cell_split: sorting failed." );
  for ( k = i ; k < count ; k++ )
      if ( parts[k].x[0] < pivot[0] )
          error( "cell_split: sorting failed." ); */
  left[1] = i;
  right[1] = count - 1;
  left[0] = 0;
  right[0] = j;

  /* Split along the y axis, twice. */
  for (k = 1; k >= 0; k--) {
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && parts[i].x[1] <= pivot[1]) i += 1;
      while (j >= left[k] && parts[j].x[1] > pivot[1]) j -= 1;
      if (i < j) {
        temp = parts[i];
        parts[i] = parts[j];
        parts[j] = temp;
        xtemp = xparts[i];
        xparts[i] = xparts[j];
        xparts[j] = xtemp;
      }
    }
    /* for ( int kk = left[k] ; kk <= j ; kk++ )
        if ( parts[kk].x[1] > pivot[1] ) {
            message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
            error( "sorting failed (left)." );
401
            }
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    for ( int kk = i ; kk <= right[k] ; kk++ )
        if ( parts[kk].x[1] < pivot[1] )
            error( "sorting failed (right)." ); */
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Split along the z axis, four times. */
  for (k = 3; k >= 0; k--) {
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && parts[i].x[2] <= pivot[2]) i += 1;
      while (j >= left[k] && parts[j].x[2] > pivot[2]) j -= 1;
      if (i < j) {
        temp = parts[i];
        parts[i] = parts[j];
        parts[j] = temp;
        xtemp = xparts[i];
        xparts[i] = xparts[j];
        xparts[j] = xtemp;
      }
    }
    /* for ( int kk = left[k] ; kk <= j ; kk++ )
        if ( parts[kk].x[2] > pivot[2] ) {
            message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
            error( "sorting failed (left)." );
431
            }
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    for ( int kk = i ; kk <= right[k] ; kk++ )
        if ( parts[kk].x[2] < pivot[2] ) {
            message( "ival=[%i,%i], i=%i, j=%i." , left[k] , right[k] , i , j );
            error( "sorting failed (right)." );
            } */
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Store the counts and offsets. */
  for (k = 0; k < 8; k++) {
    c->progeny[k]->count = right[k] - left[k] + 1;
    c->progeny[k]->parts = &c->parts[left[k]];
    c->progeny[k]->xparts = &c->xparts[left[k]];
  }

  /* Re-link the gparts. */
  for (k = 0; k < count; k++)
    if (parts[k].gpart != NULL) parts[k].gpart->part = &parts[k];

  /* Verify that _all_ the parts have been assigned to a cell. */
  /* for ( k = 1 ; k < 8 ; k++ )
      if ( &c->progeny[k-1]->parts[ c->progeny[k-1]->count ] !=
  c->progeny[k]->parts )
          error( "Particle sorting failed (internal consistency)." );
  if ( c->progeny[0]->parts != c->parts )
      error( "Particle sorting failed (left edge)." );
  if ( &c->progeny[7]->parts[ c->progeny[7]->count ] != &c->parts[ count ] )
      error( "Particle sorting failed (right edge)." ); */

  /* Verify a few sub-cells. */
  /* for ( k = 0 ; k < c->progeny[0]->count ; k++ )
      if ( c->progeny[0]->parts[k].x[0] > pivot[0] ||
           c->progeny[0]->parts[k].x[1] > pivot[1] ||
           c->progeny[0]->parts[k].x[2] > pivot[2] )
          error( "Sorting failed (progeny=0)." );
  for ( k = 0 ; k < c->progeny[1]->count ; k++ )
      if ( c->progeny[1]->parts[k].x[0] > pivot[0] ||
           c->progeny[1]->parts[k].x[1] > pivot[1] ||
           c->progeny[1]->parts[k].x[2] <= pivot[2] )
          error( "Sorting failed (progeny=1)." );
  for ( k = 0 ; k < c->progeny[2]->count ; k++ )
      if ( c->progeny[2]->parts[k].x[0] > pivot[0] ||
           c->progeny[2]->parts[k].x[1] <= pivot[1] ||
           c->progeny[2]->parts[k].x[2] > pivot[2] )
          error( "Sorting failed (progeny=2)." ); */

  /* Now do the same song and dance for the gparts. */

  /* Split along the x-axis. */
  i = 0;
  j = gcount - 1;
  while (i <= j) {
    while (i <= gcount - 1 && gparts[i].x[0] <= pivot[0]) i += 1;
    while (j >= 0 && gparts[j].x[0] > pivot[0]) j -= 1;
    if (i < j) {
      gtemp = gparts[i];
      gparts[i] = gparts[j];
      gparts[j] = gtemp;
493
    }
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
  }
  left[1] = i;
  right[1] = gcount - 1;
  left[0] = 0;
  right[0] = j;

  /* Split along the y axis, twice. */
  for (k = 1; k >= 0; k--) {
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && gparts[i].x[1] <= pivot[1]) i += 1;
      while (j >= left[k] && gparts[j].x[1] > pivot[1]) j -= 1;
      if (i < j) {
        gtemp = gparts[i];
        gparts[i] = gparts[j];
        gparts[j] = gtemp;
      }
    }
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Split along the z axis, four times. */
  for (k = 3; k >= 0; k--) {
    i = left[k];
    j = right[k];
    while (i <= j) {
      while (i <= right[k] && gparts[i].x[2] <= pivot[2]) i += 1;
      while (j >= left[k] && gparts[j].x[2] > pivot[2]) j -= 1;
      if (i < j) {
        gtemp = gparts[i];
        gparts[i] = gparts[j];
        gparts[j] = gtemp;
      }
    }
    left[2 * k + 1] = i;
    right[2 * k + 1] = right[k];
    left[2 * k] = left[k];
    right[2 * k] = j;
  }

  /* Store the counts and offsets. */
  for (k = 0; k < 8; k++) {
    c->progeny[k]->gcount = right[k] - left[k] + 1;
    c->progeny[k]->gparts = &c->gparts[left[k]];
  }

  /* Re-link the parts. */
  for (k = 0; k < gcount; k++)
    if (gparts[k].id > 0) gparts[k].part->gpart = &gparts[k];
}
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

/**
 * @brief Initialises all particles to a valid state even if the ICs were stupid
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
void cell_init_parts(struct cell *c, void *data) {

  struct part *p = c->parts;
  struct xpart *xp = c->xparts;
  
  for(int i=0; i<c->count; ++i) {
    p[i].t_begin = 0.;
    p[i].t_end = 0.;
    p[i].rho = -1.;
    xp[i].v_full[0] = p[i].v[0];
    xp[i].v_full[1] = p[i].v[1];
    xp[i].v_full[2] = p[i].v[2];
  }
  c->t_end_min = 0.;
}