space.c 40 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  /* Get the relative distance between the pairs, wrapping. */
101
102
103
  const int periodic = s->periodic;
  double dx[3];
  for (int k = 0; k < 3; k++) {
104
105
106
107
108
109
110
111
112
113
114
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
115
  int sid = 0;
116
  for (int k = 0; k < 3; k++)
117
118
119
120
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
121
    struct cell *temp = *ci;
122
123
    *ci = *cj;
    *cj = temp;
124
    for (int k = 0; k < 3; k++) shift[k] = -shift[k];
125
126
127
128
129
130
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
131

132
/**
133
 * @brief Recursively dismantle a cell tree.
134
135
 *
 */
136
137
138
139

void space_rebuild_recycle(struct space *s, struct cell *c) {

  if (c->split)
140
    for (int k = 0; k < 8; k++)
141
142
143
144
145
146
147
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

148
/**
149
 * @brief Re-build the cell grid.
150
 *
151
152
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
153
 * @param verbose Print messages to stdout or not.
154
 */
155

156
void space_regrid(struct space *s, double cell_max, int verbose) {
157

158
159
  float h_max = s->cell_min / kernel_gamma / space_stretch;
  const size_t nr_parts = s->nr_parts;
160
  struct cell *restrict c;
161
  ticks tic = getticks();
162
163
164
165

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
166
    for (int k = 0; k < s->nr_cells; k++) {
167
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
168
    }
169
  } else {
170
    for (int k = 0; k < nr_parts; k++) {
171
172
173
174
175
176
177
178
179
180
181
182
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
183
      error("Failed to aggregate the rebuild flag across nodes.");
184
185
186
    h_max = buff;
  }
#endif
187
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
188
189

  /* Get the new putative cell dimensions. */
190
  int cdim[3];
191
  for (int k = 0; k < 3; k++)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
214
      for (int k = 0; k < s->nr_cells; k++) {
215
216
217
218
219
220
221
222
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
223
    for (int k = 0; k < 3; k++) {
224
225
226
227
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
228
    const float dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));
229
230
231
232
233
234
235

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
236
    for (int k = 0; k < s->nr_cells; k++)
237
238
239
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
240
241
242
    for (int i = 0; i < cdim[0]; i++)
      for (int j = 0; j < cdim[1]; j++)
        for (int k = 0; k < cdim[2]; k++) {
243
244
245
246
247
248
249
250
251
252
253
254
255
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
256
        }
257
258

    /* Be verbose about the change. */
259
260
261
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
262
263
264
    fflush(stdout);

  } /* re-build upper-level cells? */
265
266
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
267
268
269
270
271

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
272
    for (int k = 0; k < s->nr_cells; k++) {
273
274
275
276
277
278
279
280
281
282
283
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
284
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
285
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
287
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
288
      s->cells[k].super = &s->cells[k];
289
    }
290
291
    s->maxdepth = 0;
  }
292
293
294
295

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
296
}
297
298
299
300
301
302

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
303
 * @param verbose Print messages to stdout or not
304
305
 *
 */
306

307
void space_rebuild(struct space *s, double cell_max, int verbose) {
308

309
  ticks tic = getticks();
310
311
312
313
314

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
315
  space_regrid(s, cell_max, verbose);
316

317
318
319
320
321
322
  int nr_parts = s->nr_parts;
  int nr_gparts = s->nr_gparts;
  struct cell *restrict cells = s->cells;

  double ih[3], dim[3];
  int cdim[3];
323
324
325
326
327
328
329
330
331
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
332
333
334
335
336
337
338
339
340
341

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
  size_t *ind;
  if ((ind = (size_t *)malloc(sizeof(size_t) * ind_size)) == NULL)
    error("Failed to allocate temporary particle indices.");
  for (int k = 0; k < nr_parts; k++) {
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
342
343
344
345
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
346
    ind[k] =
347
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
348
    cells[ind[k]].count++;
349
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
350
351
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
352
353
354

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
355
356
  const int nodeID = s->e->nodeID;
  for (int k = 0; k < nr_parts; k++)
357
358
359
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
360
361
362
363
364
365
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
366
367
368
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
369
370
    }

371
372
373
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
374
375
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
376
377

  /* Re-allocate the index array if needed.. */
378
  if (s->nr_parts > ind_size) {
379
380
    size_t *ind_new;
    if ((ind_new = (size_t *)malloc(sizeof(size_t) * s->nr_parts)) == NULL)
381
      error("Failed to allocate temporary particle indices.");
382
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
383
384
    free(ind);
    ind = ind_new;
385
386
387
  }

  /* Assign each particle to its cell. */
388
389
  for (int k = nr_parts; k < s->nr_parts; k++) {
    struct part *p = &s->parts[k];
390
    ind[k] =
391
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
392
393
394
395
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
396
  }
397
  nr_parts = s->nr_parts;
398
399
400
#endif

  /* Sort the parts according to their cells. */
401
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
402
403

  /* Re-link the gparts. */
404
  for (int k = 0; k < nr_parts; k++)
405
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
406

407
  /* Verify space_sort_struct. */
408
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
409
      if ( ind[k-1] > ind[k] ) {
410
411
          error( "Sort failed!" );
          }
412
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
413
414
415
416
417
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
418
  free(ind);
419
420
421

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
422
423
424
425
426
  const size_t gind_size = s->size_gparts;
  size_t *gind;
  if ((gind = (size_t *)malloc(sizeof(size_t) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
427
    struct gpart *gp = &s->gparts[k];
428
    for (int j = 0; j < 3; j++)
429
430
431
432
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
433
    gind[k] =
434
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
435
    cells[gind[k]].gcount++;
436
  }
437
438
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit());
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#ifdef WITH_MPI

  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].gcount -= 1;
      nr_gparts -= 1;
      struct gpart tp = s->gparts[k];
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
      int t = ind[k];
      ind[k] = ind[nr_gparts];
      ind[nr_gparts] = t;
    }

  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
Matthieu Schaller's avatar
Matthieu Schaller committed
457
  // s->nr_gparts =
458
459
  //    nr_gparts + engine_exchange_strays(s->e, nr_gparts, &ind[nr_gparts],
  //                                        s->nr_gparts - nr_gparts);
Matthieu Schaller's avatar
Matthieu Schaller committed
460
  if (nr_gparts > 0)
461
462
    error("Need to implement the exchange of strays for the gparts");

463
464
465
466
467
468
469
470
471
472
473
  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
    size_t *gind_new;
    if ((gind_new = (size_t *)malloc(sizeof(size_t) * s->nr_gparts)) == NULL)
      error("Failed to allocate temporary g-particle indices.");
    memcpy(gind_new, gind, sizeof(size_t) * nr_gparts);
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
474
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
475
476
477
478
479
480
481
482
483
484
485
    struct gpart *p = &s->gparts[k];
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
    cells[gind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;

#endif
486

487
  /* Sort the gparts according to their cells. */
Matthieu Schaller's avatar
Typo    
Matthieu Schaller committed
488
  space_gparts_sort(s, gind, nr_gparts, 0, s->nr_cells - 1, verbose);
489
490

  /* Re-link the parts. */
491
  for (int k = 0; k < nr_gparts; k++)
492
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
493
494

  /* We no longer need the indices as of here. */
495
  free(gind);
496
497
498

  /* Hook the cells up to the parts. */
  // tic = getticks();
499
500
501
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
502
503
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
504
505
506
507
508
509
510
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
511
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
512
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
513
514
515

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
535
536
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
537
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
538

539
540
541
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
542
}
543

544
/**
545
546
 * @brief Sort the particles and condensed particles according to the given
 *indices.
547
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
548
 * @param s The #space.
549
550
551
552
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
553
 * @param verbose Are we talkative ?
554
 */
555
void space_parts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
556
557
558
559
560
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
561
562
563
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
564
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
565
566
567
568
569
570
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

571
  /* Add the first interval. */
572
573
574
575
576
577
578
579
580
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

581
  /* Launch the sorting tasks. */
582
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_part_sort), 0);
583
584

  /* Verify space_sort_struct. */
585
  /* for (int i = 1; i < N; i++)
586
    if (ind[i - 1] > ind[i])
587
588
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
589
590
            ind[i], min, max);
  message("Sorting succeeded."); */
591

592
  /* Clean up. */
593
  free(space_sort_struct.stack);
594
595
596
597

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
598
}
599

600
void space_do_parts_sort() {
601

602
  /* Pointers to the sorting data. */
603
  size_t *ind = space_sort_struct.ind;
604
605
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
606

607
  /* Main loop. */
608
  while (space_sort_struct.waiting) {
609

610
    /* Grab an interval off the queue. */
611
612
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
613

614
    /* Wait for the entry to be ready, or for the sorting do be done. */
615
616
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
617

618
    /* Get the stack entry. */
619
620
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
621
622
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
623
    space_sort_struct.stack[qid].ready = 0;
624

625
626
    /* Loop over sub-intervals. */
    while (1) {
627

628
      /* Bring beer. */
629
      const int pivot = (min + max) / 2;
630
631
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
632
633

      /* One pass of QuickSort's partitioning. */
634
635
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
636
637
638
639
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
640
          size_t temp_i = ind[ii];
641
642
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
643
          struct part temp_p = parts[ii];
644
645
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
646
          struct xpart temp_xp = xparts[ii];
647
648
649
650
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
651

652
      /* Verify space_sort_struct. */
653
654
655
656
657
658
659
660
661
662
663
664
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
665
666
667
668
669
670

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
671
672
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
673
674
          while (space_sort_struct.stack[qid].ready)
            ;
675
676
677
678
679
680
681
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
682
          space_sort_struct.stack[qid].ready = 1;
683
        }
684

685
686
687
688
689
690
691
692
693
694
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
695
        if (pivot + 1 < max) {
696
697
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
698
699
          while (space_sort_struct.stack[qid].ready)
            ;
700
701
702
703
704
705
706
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
707
          space_sort_struct.stack[qid].ready = 1;
708
        }
709

710
711
712
713
714
715
716
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
717

718
719
    } /* loop over sub-intervals. */

720
    atomic_dec(&space_sort_struct.waiting);
721
722

  } /* main loop. */
723
724
}

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
/**
 * @brief Sort the g-particles and condensed particles according to the given
 *indices.
 *
 * @param s The #space.
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 * @param verbose Are we talkative ?
 */
void space_gparts_sort(struct space *s, size_t *ind, size_t N, int min, int max,
                       int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
  space_sort_struct.gparts = s->gparts;
  space_sort_struct.ind = ind;
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  /* Add the first interval. */
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  /* Launch the sorting tasks. */
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_gpart_sort), 0);

  /* Verify space_sort_struct. */
  /* for (int i = 1; i < N; i++)
    if (ind[i - 1] > ind[i])
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
            ind[i], min, max);
  message("Sorting succeeded."); */

  /* Clean up. */
  free(space_sort_struct.stack);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

void space_do_gparts_sort() {

  /* Pointers to the sorting data. */
  size_t *ind = space_sort_struct.ind;
  struct gpart *gparts = space_sort_struct.gparts;
785

786
  /* Main loop. */
787
  while (space_sort_struct.waiting) {
788

789
    /* Grab an interval off the queue. */
790
791
792
793
794
795
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;

    /* Wait for the entry to be ready, or for the sorting do be done. */
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
796

797
    /* Get the stack entry. */
798
799
800
801
802
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
    space_sort_struct.stack[qid].ready = 0;
803
804
805

    /* Loop over sub-intervals. */
    while (1) {
806

807
      /* Bring beer. */
808
809
810
      const int pivot = (min + max) / 2;
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
811
812

      /* One pass of QuickSort's partitioning. */
813
814
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
815
816
817
818
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
819
          size_t temp_i = ind[ii];
820
821
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
822
          struct gpart temp_p = gparts[ii];
823
824
825
826
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
827

828
      /* Verify space_sort_struct. */
829
830
831
832
833
834
835
836
837
838
839
840
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
841
842
843
844
845
846

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
847
848
849
850
851
852
853
854
855
856
857
858
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
859
        }
860

861
862
863
864
865
866
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
867

868
869
870
      } else {

        /* Recurse on the right? */
871
        if (pivot + 1 < max) {
872
873
874
875
876
877
878
879
880
881
882
883
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          while (space_sort_struct.stack[qid].ready)
            ;
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
          space_sort_struct.stack[qid].ready = 1;
884
885
886
887
888
889
890
891
892
893
894
895
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

896
    atomic_dec(&space_sort_struct.waiting);
897
898

  } /* main loop. */
899
}
900

Pedro Gonnet's avatar
Pedro Gonnet committed
901
/**
902
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
903
904
 */

905
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
906

907
908
909
910
911
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
912

913
914
915
/**
 * @brief Map a function to all particles in a cell recursively.
 *
916
 * @param c The #cell we are working in.
917
918
919
920
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
921
922
923
924
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
925
926
927
928
929
930

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
931

932
933
934
935
936
937
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
938
/**
939
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
940
941
 *
 * @param s The #space we are working in.
942
943
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
944
945
 */

946
947
948
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
949

950
951
  int cid = 0;

952
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
953
954
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
955
}
956

957
958
959
960
961
962
963
964
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
965
966
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
988
989
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
990
991
992
993
994
995
996
997

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

998
999
1000
/**
 * @brief Map a function to all particles in a cell recursively.
 *
1001
 * @param c The #cell we are working in.
1002
1003
1004
1005
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
1006

Pedro Gonnet's avatar
Pedro Gonnet committed
1007
1008
1009
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
1010

1011
1012
1013
1014
1015
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1016
1017
1018
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

1019
1020
  /* No progeny? */
  if (full || !c->split) fun(c, data);
1021
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1022
1023

/**
1024
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
1025
1026
 *
 * @param s The #space we are working in.
1027
 * @param full Map to all cells, including cells with sub-cells.
1028
1029
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1030
 */
1031

1032
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1033
                          void (*fun)(struct cell *c, void *data), void *data) {
1034

1035
  int cid = 0;
1036

1037
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1038
1039
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
1040
}
1041

Pedro Gonnet's avatar
Pedro Gonnet committed
1042
1043
1044
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
1045

1046
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1047

1048
1049
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1050

1051
1052
1053
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1054
1055
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
1056
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1057

1058
1059
1060
1061
1062
1063
1064
1065
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
1066
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1067
                         void (*fun)(struct cell *c, void *data), void *data) {
1068

1069
  int cid = 0;
1070
1071

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1072
1073
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
1074
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1075
1076
1077
1078
1079
1080
1081

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1082

1083
void space_do_split(struct space *s, struct cell *c) {
1084

1085
1086
1087
  const int count = c->count;
  const int gcount = c->gcount;
  int maxdepth = 0;
1088
1089
  float h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0;
1090
  struct cell *temp;
1091
1092
  struct part *parts = c->parts;
  struct gpart *gparts = c->gparts;
1093
  struct xpart *xparts = c->xparts;
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
1105
    for (int k = 0; k