space.c 35.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161
162
163
164
165
166
167
168
169
170

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
  // ticks tic;

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
171
    }
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
186
      error("Failed to aggregate the rebuild flag across nodes.");
187
188
189
    h_max = buff;
  }
#endif
190
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
258
        }
259
260

    /* Be verbose about the change. */
261
262
263
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
264
265
266
    fflush(stdout);

  } /* re-build upper-level cells? */
267
268
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
290
      s->cells[k].super = &s->cells[k];
291
    }
292
293
294
    s->maxdepth = 0;
  }
}
295
296
297
298
299
300

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
301
 * @param verbose Print messages to stdout or not
302
303
 *
 */
304

305
void space_rebuild(struct space *s, double cell_max, int verbose) {
306

307
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
308
  struct cell *restrict c, *restrict cells;
309
  struct part *restrict p;
310
  int *ind;
311
312
313
314
315
316
317
  double ih[3], dim[3];
  // ticks tic;

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
318
  space_regrid(s, cell_max, verbose);
319
320
321
322
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
323
324
  const int ind_size = s->size_parts;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
325
326
327
328
329
330
331
332
333
334
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
335
  for (k = 0; k < nr_parts; k++) {
336
    p = &s->parts[k];
337
338
339
340
341
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
342
    ind[k] =
343
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
344
    cells[ind[k]].count++;
345
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
346
347
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
348
349
350
351

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
352
353
354
355
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
356
357
358
359
360
361
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
362
363
364
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
365
366
    }

367
368
369
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
370
371
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
372
373

  /* Re-allocate the index array if needed.. */
374
375
376
  if (s->nr_parts > ind_size) {
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
377
      error("Failed to allocate temporary particle indices.");
378
379
380
    memcpy(ind_new, ind, sizeof(int) * nr_parts);
    free(ind);
    ind = ind_new;
381
382
383
  }

  /* Assign each particle to its cell. */
384
  for (k = nr_parts; k < s->nr_parts; k++) {
385
    p = &s->parts[k];
386
    ind[k] =
387
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
388
389
390
391
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
392
  }
393
  nr_parts = s->nr_parts;
394
395
396
397
#endif

  /* Sort the parts according to their cells. */
  // tic = getticks();
398
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1);
399
  // message( "parts_sort took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
400
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
401
402

  /* Re-link the gparts. */
403
  for (k = 0; k < nr_parts; k++)
404
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
405

406
  /* Verify space_sort_struct. */
407
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
408
      if ( ind[k-1] > ind[k] ) {
409
410
          error( "Sort failed!" );
          }
411
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
412
413
414
415
416
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
417
  free(ind);
418
419
420

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
421
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
422
423
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
424
    struct gpart *gp = &s->gparts[k];
425
426
427
428
429
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
430
    ind[k] =
431
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
432
    cells[ind[k]].gcount++;
433
  }
434
  // message( "getting particle indices took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
435
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
436
437
438
439
440

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
  // tic = getticks();
441
  gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
442
  // message( "gparts_sort took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
443
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
444
445
446

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
447
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
448
449

  /* We no longer need the indices as of here. */
450
  free(ind);
451
452
453

  /* Hook the cells up to the parts. */
  // tic = getticks();
454
455
456
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
457
458
459
460
461
462
463
464
465
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
466
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
467
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
468
469
470
471

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
  // tic = getticks();
472
473
  // for (k = 0; k < s->nr_cells; k++) space_split(s, &cells[k]);
  for (k = 0; k < s->nr_cells; k++)
474
475
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
476
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
477

478
  // message( "space_split took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
479
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
480
}
481

482
/**
483
484
 * @brief Sort the particles and condensed particles according to the given
 *indices.
485
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
486
 * @param s The #space.
487
488
489
490
491
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 */
492

493
void space_parts_sort(struct space *s, int *ind, int N, int min, int max) {
494
  // Populate the global parallel_sort structure with the input data.
495
496
497
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
498
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  // Add the first interval.
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  // Launch the sorting tasks.
516
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
517
518

  /* Verify space_sort_struct. */
519
  /* for (int i = 1; i < N; i++)
520
    if (ind[i - 1] > ind[i])
521
522
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
523
524
            ind[i], min, max);
  message("Sorting succeeded."); */
525
526
527
528

  // Clean up.
  free(space_sort_struct.stack);
}
529

530
void space_do_parts_sort() {
531

532
533
534
535
  /* Pointers to the sorting data. */
  int *ind = space_sort_struct.ind;
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
536

537
  /* Main loop. */
538
  while (space_sort_struct.waiting) {
539

540
    /* Grab an interval off the queue. */
541
542
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
543

544
    /* Wait for the entry to be ready, or for the sorting do be done. */
545
546
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
547

548
    /* Get the stack entry. */
549
550
551
552
    int i = space_sort_struct.stack[qid].i;
    int j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
553
    space_sort_struct.stack[qid].ready = 0;
554

555
556
    /* Loop over sub-intervals. */
    while (1) {
557

558
      /* Bring beer. */
559
      const int pivot = (min + max) / 2;
560
561
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
562
563

      /* One pass of QuickSort's partitioning. */
564
565
      int ii = i;
      int jj = j;
566
567
568
569
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
570
          int temp_i = ind[ii];
571
572
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
573
          struct part temp_p = parts[ii];
574
575
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
576
          struct xpart temp_xp = xparts[ii];
577
578
579
580
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
581

582
      /* Verify space_sort_struct. */
583
584
585
586
587
588
589
590
591
592
593
594
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
595
596
597
598
599
600

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
601
602
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
603
604
          while (space_sort_struct.stack[qid].ready)
            ;
605
606
607
608
609
610
611
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
612
          space_sort_struct.stack[qid].ready = 1;
613
        }
614

615
616
617
618
619
620
621
622
623
624
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
625
        if (pivot + 1 < max) {
626
627
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
628
629
          while (space_sort_struct.stack[qid].ready)
            ;
630
631
632
633
634
635
636
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
637
          space_sort_struct.stack[qid].ready = 1;
638
        }
639

640
641
642
643
644
645
646
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
647

648
649
    } /* loop over sub-intervals. */

650
    atomic_dec(&space_sort_struct.waiting);
651
652

  } /* main loop. */
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
}

void gparts_sort(struct gpart *gparts, int *ind, int N, int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

688
689
  /* Main loop. */
  while (waiting > 0) {
690

691
692
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
693

694
695
696
697
698
699
700
701
702
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
722

723
      /* Verify space_sort_struct. */
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
750

751
752
753
754
755
756
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
757

758
759
760
      } else {

        /* Recurse on the right? */
761
        if (pivot + 1 < max) {
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
784

785
  /* Verify space_sort_struct. */
786
787
788
789
790
791
792
793
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
794

Pedro Gonnet's avatar
Pedro Gonnet committed
795
/**
796
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
797
798
 */

799
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
800

801
802
803
804
805
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
806

807
808
809
/**
 * @brief Map a function to all particles in a cell recursively.
 *
810
 * @param c The #cell we are working in.
811
812
813
814
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
815
816
817
818
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
819
820
821
822
823
824

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
825

826
827
828
829
830
831
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
832
/**
833
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
834
835
 *
 * @param s The #space we are working in.
836
837
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
838
839
 */

840
841
842
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
843

844
845
  int cid = 0;

846
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
847
848
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
849
}
850

851
852
853
854
855
856
857
858
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
859
860
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
882
883
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
884
885
886
887
888
889
890
891

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

892
893
894
/**
 * @brief Map a function to all particles in a cell recursively.
 *
895
 * @param c The #cell we are working in.
896
897
898
899
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
900

Pedro Gonnet's avatar
Pedro Gonnet committed
901
902
903
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
904

905
906
907
908
909
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
910
911
912
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

913
914
  /* No progeny? */
  if (full || !c->split) fun(c, data);
915
}
Pedro Gonnet's avatar
Pedro Gonnet committed
916
917

/**
918
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
919
920
 *
 * @param s The #space we are working in.
921
 * @param full Map to all cells, including cells with sub-cells.
922
923
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
924
 */
925

926
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
927
                          void (*fun)(struct cell *c, void *data), void *data) {
928

929
  int cid = 0;
930

931
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
932
933
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
934
}
935

Pedro Gonnet's avatar
Pedro Gonnet committed
936
937
938
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
939

940
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
941

942
943
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
944

945
946
947
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
948
949
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
950
}
Pedro Gonnet's avatar
Pedro Gonnet committed
951

952
953
954
955
956
957
958
959
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
960
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
961
                         void (*fun)(struct cell *c, void *data), void *data) {
962

963
  int cid = 0;
964
965

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
966
967
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
968
}
Pedro Gonnet's avatar
Pedro Gonnet committed
969
970
971
972
973
974
975

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
976

977
978
979
void space_split(struct space *s, struct cell *c) {

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
980
981
  float h, h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0, ti_end;
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
        space_split(s, c->progeny[k]);
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1030
1031
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1032
1033
1034
1035
1036
1037
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1038
1039
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      h = p->h;
1061
      ti_end = p->ti_end;
1062
      if (h > h_max) h_max = h;
1063
1064
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1065
    }
1066
    c->h_max = h_max;
1067
1068
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1069
  }
1070

1071
  /* Set ownership according to the start of the parts array. */
1072
1073
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1074

Pedro Gonnet's avatar
Pedro Gonnet committed
1075
1076
1077
1078
1079
1080
1081
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1104
1105
1106
1107
1108
1109
1110

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1111
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1112

1113
1114
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1146
1147
1148
1149

/**
 * @brief Split the space into cells given the array of particles.
 *
1150
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1151
1152
1153
1154
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1155
 * @param h_max The maximal interaction radius.
1156
 * @param verbose Print messages to stdout or not
Pedro Gonnet's avatar
Pedro Gonnet committed
1157
1158
 *
 * Makes a grid of edge length > r_max and fills the particles
1159
 * into the respective cells. Cells containing more than #space_splitsize
Pedro Gonnet's avatar
Pedro Gonnet committed
1160
1161
1162
1163
 * parts with a cutoff below half the cell width are then split
 * recursively.
 */

1164
void space_init(struct space *s, double dim[3], struct part *parts, int N,
1165
                int periodic, double h_max, int verbose) {
1166

1167
  /* Store everything in the space. */
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
  s->dim[0] = dim[0];
  s->dim[1] = dim[1];
  s->dim[2] = dim[2];
  s->periodic = periodic;
  s->nr_parts = N;
  s->size_parts = N;
  s->parts = parts;
  s->cell_min = h_max;
  s->nr_queues = 1;
  s->size_parts_foreign = 0;

  /* Check that all the particle positions are reasonable, wrap if periodic. */
  if (periodic) {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++) {
        while (parts[k].x[j] < 0) parts[k].x[j] += dim[j];
        while (parts[k].x[j] >= dim[j]) parts[k].x[j] -= dim[j];
1185
      }
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
  } else {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++)
        if (parts[k].x[j] < 0 || parts[k].x[j] >= dim[j])
          error("Not all particles are within the specified domain.");
  }

  /* Allocate the xtra parts array. */
  if (posix_memalign((void *)&s->xparts, part_align,
                     N * sizeof(struct xpart)) != 0)
    error("Failed to allocate xparts.");
  bzero(s->xparts, N * sizeof(struct xpart));

  /* For now, clone the parts to make gparts. */
  if (posix_memalign((void *)&s->gparts, part_align,
                     N * sizeof(struct gpart)) != 0)
    error("Failed to allocate gparts.");
  bzero(s->gparts, N * sizeof(struct gpart));
  /* for ( int k = 0 ; k < N ; k++ ) {
      s->gparts[k].x[0] = s->parts[k].x[0];
      s->gparts[k].x[1] = s->parts[k].x[1];
      s->gparts[k].x[2] = s->parts[k].x[2];
      s->gparts[k].v[0] = s->parts[k].v[0];
      s->gparts[k].v[1] = s->parts[k].v[1];
      s->gparts[k].v[2] = s->parts[k].v[2];
      s->gparts[k].mass = s->parts[k].mass;
      s->gparts[k].dt = s->parts[k].dt;
      s->gparts[k].id = s->parts[k].id;
      s->gparts[k].part = &s->parts[k];
      s->parts[k].gpart = &s->gparts[k];
1216
      }
1217
1218
1219
1220
1221
1222
  s->nr_gparts = s->nr_parts; */
  s->nr_gparts = 0;
  s->size_gparts = s->size_parts;

  /* Init the space lock. */
  if (lock_init(&s->lock) != 0) error("Failed to create space spin-lock.");
Pedro Gonnet's avatar
Pedro Gonnet committed
1223

1224
  /* Build the cells and the tasks. */
1225
  space_regrid(s, h_max, verbose);
1226
}