cell.c 132 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
Loic Hausammann's avatar
Loic Hausammann committed
64
#include "stars.h"
65
#include "timers.h"
66
#include "tools.h"
67

68
69
70
/* Global variables. */
int cell_next_tag = 0;

71
72
73
74
75
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
76
int cell_getsize(struct cell *c) {
77

Pedro Gonnet's avatar
Pedro Gonnet committed
78
79
  /* Number of cells in this subtree. */
  int count = 1;
80

81
82
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
83
    for (int k = 0; k < 8; k++)
84
85
86
87
88
89
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

90
/**
91
 * @brief Link the cells recursively to the given #part array.
92
93
94
95
96
97
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
98
int cell_link_parts(struct cell *c, struct part *parts) {
99

100
  c->hydro.parts = parts;
101
102

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
103
104
105
106
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
107
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
108
109
    }
  }
110

111
  /* Return the total number of linked particles. */
112
  return c->hydro.count;
113
}
114

115
116
117
118
119
120
121
122
123
124
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

125
  c->grav.parts = gparts;
126
127
128
129
130
131
132
133
134
135
136

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
137
  return c->grav.count;
138
139
}

140
141
142
143
144
145
146
147
148
149
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

150
  c->stars.parts = sparts;
151
152
153
154
155
156
157
158
159
160
161

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
162
  return c->stars.count;
163
164
}

165
166
167
168
169
170
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
171
172
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
173
174
175
 *
 * @return The number of packed cells.
 */
176
int cell_pack(struct cell *restrict c, struct pcell *restrict pc,
Matthieu Schaller's avatar
Matthieu Schaller committed
177
              const int with_gravity) {
178

179
180
#ifdef WITH_MPI

181
  /* Start by packing the data of the current cell. */
182
183
184
185
186
  pc->hydro.h_max = c->hydro.h_max;
  pc->hydro.ti_end_min = c->hydro.ti_end_min;
  pc->hydro.ti_end_max = c->hydro.ti_end_max;
  pc->grav.ti_end_min = c->grav.ti_end_min;
  pc->grav.ti_end_max = c->grav.ti_end_max;
187
188
  pc->hydro.ti_old_part = c->hydro.ti_old_part;
  pc->grav.ti_old_part = c->grav.ti_old_part;
189
190
  pc->grav.ti_old_multipole = c->grav.ti_old_multipole;
  pc->hydro.count = c->hydro.count;
191
192
  pc->grav.count = c->grav.count;
  pc->stars.count = c->stars.count;
193
  pc->maxdepth = c->maxdepth;
194

195
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
196
  if (with_gravity) {
197
    const struct gravity_tensors *mp = c->grav.multipole;
198

199
200
201
202
203
204
205
206
207
    pc->grav.m_pole = mp->m_pole;
    pc->grav.CoM[0] = mp->CoM[0];
    pc->grav.CoM[1] = mp->CoM[1];
    pc->grav.CoM[2] = mp->CoM[2];
    pc->grav.CoM_rebuild[0] = mp->CoM_rebuild[0];
    pc->grav.CoM_rebuild[1] = mp->CoM_rebuild[1];
    pc->grav.CoM_rebuild[2] = mp->CoM_rebuild[2];
    pc->grav.r_max = mp->r_max;
    pc->grav.r_max_rebuild = mp->r_max_rebuild;
208
209
  }

210
211
212
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
213
214

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
215
216
  int count = 1;
  for (int k = 0; k < 8; k++)
217
218
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
219
      count += cell_pack(c->progeny[k], &pc[count], with_gravity);
220
    } else {
221
      pc->progeny[k] = -1;
222
    }
223
224

  /* Return the number of packed cells used. */
225
  c->mpi.pcell_size = count;
226
  return count;
227
228
229
230
231

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
232
233
}

234
235
236
237
238
239
240
241
242
243
244
245
246
/**
 * @brief Pack the tag of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param tags Pointer to an array of packed tags.
 *
 * @return The number of packed tags.
 */
int cell_pack_tags(const struct cell *c, int *tags) {

#ifdef WITH_MPI

  /* Start by packing the data of the current cell. */
247
  tags[0] = c->mpi.tag;
248
249
250
251
252
253
254
255

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL)
      count += cell_pack_tags(c->progeny[k], &tags[count]);

#ifdef SWIFT_DEBUG_CHECKS
256
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
257
258
259
260
261
262
263
264
265
266
267
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the number of packed tags used. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

268
269
270
271
272
273
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
274
275
 * @param with_gravity Are we running with gravity and hence need
 *      to exchange multipoles?
276
277
278
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
279
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
280
                struct space *restrict s, const int with_gravity) {
281
282
283
284

#ifdef WITH_MPI

  /* Unpack the current pcell. */
285
286
287
288
289
  c->hydro.h_max = pc->hydro.h_max;
  c->hydro.ti_end_min = pc->hydro.ti_end_min;
  c->hydro.ti_end_max = pc->hydro.ti_end_max;
  c->grav.ti_end_min = pc->grav.ti_end_min;
  c->grav.ti_end_max = pc->grav.ti_end_max;
290
291
  c->hydro.ti_old_part = pc->hydro.ti_old_part;
  c->grav.ti_old_part = pc->grav.ti_old_part;
292
293
  c->grav.ti_old_multipole = pc->grav.ti_old_multipole;
  c->hydro.count = pc->hydro.count;
294
295
  c->grav.count = pc->grav.count;
  c->stars.count = pc->stars.count;
296
297
  c->maxdepth = pc->maxdepth;

298
299
300
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
301

302
  /* Copy the Multipole related information */
Matthieu Schaller's avatar
Matthieu Schaller committed
303
  if (with_gravity) {
304

305
    struct gravity_tensors *mp = c->grav.multipole;
306

307
308
309
310
311
312
313
314
315
    mp->m_pole = pc->grav.m_pole;
    mp->CoM[0] = pc->grav.CoM[0];
    mp->CoM[1] = pc->grav.CoM[1];
    mp->CoM[2] = pc->grav.CoM[2];
    mp->CoM_rebuild[0] = pc->grav.CoM_rebuild[0];
    mp->CoM_rebuild[1] = pc->grav.CoM_rebuild[1];
    mp->CoM_rebuild[2] = pc->grav.CoM_rebuild[2];
    mp->r_max = pc->grav.r_max;
    mp->r_max_rebuild = pc->grav.r_max_rebuild;
316
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
317

318
319
320
321
  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
322
  c->split = 0;
323
324
325
326
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
327
      temp->hydro.count = 0;
328
329
      temp->grav.count = 0;
      temp->stars.count = 0;
330
331
332
333
334
335
336
337
338
339
340
341
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
342
      temp->hydro.dx_max_part = 0.f;
343
      temp->hydro.dx_max_sort = 0.f;
Loic Hausammann's avatar
Loic Hausammann committed
344
      temp->stars.dx_max_part = 0.f;
345
346
347
348
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
349
      count += cell_unpack(&pc[pc->progeny[k]], temp, s, with_gravity);
350
351
352
    }

  /* Return the total number of unpacked cells. */
353
  c->mpi.pcell_size = count;
354
355
356
357
358
359
360
361
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

362
363
364
365
366
367
368
369
370
371
372
373
374
/**
 * @brief Unpack the tags of a given cell and its sub-cells.
 *
 * @param tags An array of tags.
 * @param c The #cell in which to unpack the tags.
 *
 * @return The number of tags created.
 */
int cell_unpack_tags(const int *tags, struct cell *restrict c) {

#ifdef WITH_MPI

  /* Unpack the current pcell. */
375
  c->mpi.tag = tags[0];
376
377
378
379
380
381
382
383
384
385
386

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_tags(&tags[count], c->progeny[k]);
    }

#ifdef SWIFT_DEBUG_CHECKS
387
  if (c->mpi.pcell_size != count) error("Inconsistent tag and pcell count!");
388
389
390
391
392
393
394
395
396
397
398
#endif  // SWIFT_DEBUG_CHECKS

  /* Return the total number of unpacked tags. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

399
400
401
402
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
403
 * @param pcells (output) The end-of-timestep information we pack into
404
405
406
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
407
408
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
409

410
411
#ifdef WITH_MPI

412
  /* Pack this cell's data. */
413
414
415
416
  pcells[0].hydro.ti_end_min = c->hydro.ti_end_min;
  pcells[0].hydro.ti_end_max = c->hydro.ti_end_max;
  pcells[0].grav.ti_end_min = c->grav.ti_end_min;
  pcells[0].grav.ti_end_max = c->grav.ti_end_max;
417
  pcells[0].hydro.dx_max_part = c->hydro.dx_max_part;
Loic Hausammann's avatar
Loic Hausammann committed
418
  pcells[0].stars.dx_max_part = c->stars.dx_max_part;
419

420
421
422
423
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
424
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
425
426
427
428
    }

  /* Return the number of packed values. */
  return count;
429
430
431
432
433

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
434
435
}

436
437
438
439
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
440
 * @param pcells The end-of-timestep information to unpack
441
442
443
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
444
445
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
446

447
448
#ifdef WITH_MPI

449
  /* Unpack this cell's data. */
450
451
452
453
  c->hydro.ti_end_min = pcells[0].hydro.ti_end_min;
  c->hydro.ti_end_max = pcells[0].hydro.ti_end_max;
  c->grav.ti_end_min = pcells[0].grav.ti_end_min;
  c->grav.ti_end_max = pcells[0].grav.ti_end_max;
454
  c->hydro.dx_max_part = pcells[0].hydro.dx_max_part;
Loic Hausammann's avatar
Loic Hausammann committed
455
  c->stars.dx_max_part = pcells[0].stars.dx_max_part;
456

457
458
459
460
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
461
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
462
463
464
    }

  /* Return the number of packed values. */
465
  return count;
466
467
468
469
470

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
471
}
472

473
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
474
475
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
476
477
478
479
480
481
482
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
483
                         struct gravity_tensors *restrict pcells) {
484
485
486
487

#ifdef WITH_MPI

  /* Pack this cell's data. */
488
  pcells[0] = *c->grav.multipole;
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
515
                           struct gravity_tensors *restrict pcells) {
516
517
518
519

#ifdef WITH_MPI

  /* Unpack this cell's data. */
520
  *c->grav.multipole = pcells[0];
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

538
/**
539
 * @brief Lock a cell for access to its array of #part and hold its parents.
540
541
 *
 * @param c The #cell.
542
 * @return 0 on success, 1 on failure
543
 */
544
545
546
547
548
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
549
  if (c->hydro.hold || lock_trylock(&c->hydro.lock) != 0) {
550
551
552
553
554
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
555
  if (c->hydro.hold) {
556
557

    /* Unlock this cell. */
558
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
559
560
561
562
563
564
565

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
566
  struct cell *finger;
567
568
569
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
570
    if (lock_trylock(&finger->hydro.lock) != 0) break;
571
572

    /* Increment the hold. */
573
    atomic_inc(&finger->hydro.hold);
574
575

    /* Unlock the cell. */
576
    if (lock_unlock(&finger->hydro.lock) != 0) error("Failed to unlock cell.");
577
578
579
580
581
582
583
584
585
586
587
588
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
589
590
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
591
      atomic_dec(&finger2->hydro.hold);
592
593

    /* Unlock this cell. */
594
    if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
595
596
597
598
599
600
601

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

602
603
604
605
606
607
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
608
609
610
611
612
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
613
  if (c->grav.phold || lock_trylock(&c->grav.plock) != 0) {
614
615
616
617
618
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
619
  if (c->grav.phold) {
620
621

    /* Unlock this cell. */
622
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
623
624
625
626
627
628
629

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
630
  struct cell *finger;
631
632
633
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
634
    if (lock_trylock(&finger->grav.plock) != 0) break;
635
636

    /* Increment the hold. */
637
    atomic_inc(&finger->grav.phold);
638
639

    /* Unlock the cell. */
640
    if (lock_unlock(&finger->grav.plock) != 0) error("Failed to unlock cell.");
641
642
643
644
645
646
647
648
649
650
651
652
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
653
654
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
655
      atomic_dec(&finger2->grav.phold);
656
657

    /* Unlock this cell. */
658
    if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
659
660
661
662
663
664

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
665

666
667
668
669
670
671
672
673
674
675
676
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
677
  if (c->grav.mhold || lock_trylock(&c->grav.mlock) != 0) {
678
679
680
681
682
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
683
  if (c->grav.mhold) {
684
685

    /* Unlock this cell. */
686
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
687
688
689
690
691
692
693
694
695
696
697

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
698
    if (lock_trylock(&finger->grav.mlock) != 0) break;
699
700

    /* Increment the hold. */
701
    atomic_inc(&finger->grav.mhold);
702
703

    /* Unlock the cell. */
704
    if (lock_unlock(&finger->grav.mlock) != 0) error("Failed to unlock cell.");
705
706
707
708
709
710
711
712
713
714
715
716
717
718
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
719
      atomic_dec(&finger2->grav.mhold);
720
721

    /* Unlock this cell. */
722
    if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
723
724
725
726
727
728
729

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

730
731
732
733
734
735
736
737
738
739
740
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
741
  if (c->stars.hold || lock_trylock(&c->stars.lock) != 0) {
742
743
744
745
746
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
747
  if (c->stars.hold) {
748
749

    /* Unlock this cell. */
750
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
751
752
753
754
755
756
757
758
759
760
761

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
762
    if (lock_trylock(&finger->stars.lock) != 0) break;
763
764

    /* Increment the hold. */
765
    atomic_inc(&finger->stars.hold);
766
767

    /* Unlock the cell. */
768
    if (lock_unlock(&finger->stars.lock) != 0) error("Failed to unlock cell.");
769
770
771
772
773
774
775
776
777
778
779
780
781
782
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
783
      atomic_dec(&finger2->stars.hold);
784
785

    /* Unlock this cell. */
786
    if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
787
788
789
790
791
792
793

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

794
/**
795
 * @brief Unlock a cell's parents for access to #part array.
796
797
798
 *
 * @param c The #cell.
 */
799
800
801
802
803
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
804
  if (lock_unlock(&c->hydro.lock) != 0) error("Failed to unlock cell.");
805
806

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
807
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
808
    atomic_dec(&finger->hydro.hold);
809
810
811
812

  TIMER_TOC(timer_locktree);
}

813
814
815
816
817
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
818
819
820
821
822
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
823
  if (lock_unlock(&c->grav.plock) != 0) error("Failed to unlock cell.");
824
825

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
826
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
827
    atomic_dec(&finger->grav.phold);
828
829
830
831

  TIMER_TOC(timer_locktree);
}

832
833
834
835
836
837
838
839
840
841
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
842
  if (lock_unlock(&c->grav.mlock) != 0) error("Failed to unlock cell.");
843
844
845

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
846
    atomic_dec(&finger->grav.mhold);
847
848
849
850

  TIMER_TOC(timer_locktree);
}

851
852
853
854
855
856
857
858
859
860
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
861
  if (lock_unlock(&c->stars.lock) != 0) error("Failed to unlock cell.");
862
863
864

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
865
    atomic_dec(&finger->stars.hold);
866
867
868
869

  TIMER_TOC(timer_locktree);
}

870
871
872
873
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
874
 * @param parts_offset Offset of the cell parts array relative to the
875
 *        space's parts array, i.e. c->hydro.parts - s->parts.
876
 * @param sparts_offset Offset of the cell sparts array relative to the
877
878
 *        space's sparts array, i.e. c->stars.parts - s->stars.parts.
 * @param buff A buffer with at least max(c->hydro.count, c->grav.count)
879
 * entries, used for sorting indices.
880
881
882
 * @param sbuff A buffer with at least max(c->stars.count, c->grav.count)
 * entries, used for sorting indices for the sparts.
 * @param gbuff A buffer with at least max(c->hydro.count, c->grav.count)
883
 * entries, used for sorting indices for the gparts.
884
 */
885
886
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
887
                struct cell_buff *gbuff) {
888

889
890
  const int count = c->hydro.count, gcount = c->grav.count,
            scount = c->stars.count;
891
892
  struct part *parts = c->hydro.parts;
  struct xpart *xparts = c->hydro.xparts;
893
894
  struct gpart *gparts = c->grav.parts;
  struct spart *sparts = c->stars.parts;
895
896
897
898
899
900
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

901
902
903
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
904
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
905
        buff[k].x[2] != parts[k].x[2])
906
907
      error("Inconsistent buff contents.");
  }
908
909
910
911
912
913
914
915
916
917
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
918
#endif /* SWIFT_DEBUG_CHECKS */
919
920
921

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
922
923
    const int bid = (buff[k].x[0] >= pivot[0]) * 4 +
                    (buff[k].x[1] >= pivot[1]) * 2 + (buff[k].x[2] >= pivot[2]);
924
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
925
    buff[k].ind = bid;
926
  }
927

928
929
930
931
932
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
933
934
  }

935
936
937
938
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
939
      int bid = buff[k].ind;
940
941
942
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
943
        struct cell_buff temp_buff = buff[k];
944
945
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
946
          while (buff[j].ind == bid) {
947
948
949
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
950
951
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
952
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
953
954
          if (parts[j].gpart)
            parts[j].gpart->id_or_neg_offset = -(j + parts_offset);
955
          bid = temp_buff.ind;
956
957
958
        }
        parts[k] = part;
        xparts[k] = xpart;
959
        buff[k] = temp_buff;
960
961
        if (parts[k].gpart)
          parts[k].gpart->id_or_neg_offset = -(k + parts_offset);
962
      }
963
      bucket_count[bid]++;
964
965
966
967
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
968
  for (int k = 0; k < 8; k++) {
969
970
971
    c->progeny[k]->hydro.count = bucket_count[k];
    c->progeny[k]->hydro.parts = &c->hydro.parts[bucket_offset[k]];
    c->progeny[k]->hydro.xparts = &c->hydro.xparts[bucket_offset[k]];
972
973
  }

974
#ifdef SWIFT_DEBUG_CHECKS
975
976
977
978
979
980
981
982
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

983
  /* Verify that _all_ the parts have been assigned to a cell. */
984
  for (int k = 1; k < 8; k++)
985
986
    if (&c->progeny[k - 1]->hydro.parts[c->progeny[k - 1]->hydro.count] !=
        c->progeny[k]->hydro.parts)
987
      error("Particle sorting failed (internal consistency).");
988
  if (c->progeny[0]->hydro.parts != c->hydro.parts)
989
    error("Particle sorting failed (left edge).");
990
991
  if (&c->progeny[7]->hydro.parts[c->progeny[7]->hydro.count] !=
      &c->hydro.parts[count])
992
    error("Particle sorting failed (right edge).");
993
994

  /* Verify a few sub-cells. */
995
996
997
998
  for (int k = 0; k < c->progeny[0]->hydro.count; k++)
    if (c->progeny[0]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[0]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[0]->hydro.parts[k].x[2] >= pivot[2])
999
      error("Sorting failed (progeny=0).");
1000
1001
1002
1003
  for (int k = 0; k < c->progeny[1]->hydro.count; k++)
    if (c->progeny[1]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[1]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[1]->hydro.parts[k].x[2] < pivot[2])
1004
      error("Sorting failed (progeny=1).");
1005
1006
1007
1008
  for (int k = 0; k < c->progeny[2]->hydro.count; k++)
    if (c->progeny[2]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[2]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[2]->hydro.parts[k].x[2] >= pivot[2])
1009
      error("Sorting failed (progeny=2).");
1010
1011
1012
1013
  for (int k = 0; k < c->progeny[3]->hydro.count; k++)
    if (c->progeny[3]->hydro.parts[k].x[0] >= pivot[0] ||
        c->progeny[3]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[3]->hydro.parts[k].x[2] < pivot[2])
1014
      error("Sorting failed (progeny=3).");
1015
1016
1017
1018
  for (int k = 0; k < c->progeny[4]->hydro.count; k++)
    if (c->progeny[4]->hydro.parts[k].x[0] < pivot[0] ||
        c->progeny[4]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[4]->hydro.parts[k].x[2] >= pivot[2])
1019
      error("Sorting failed (progeny=4).");
1020
1021
1022
1023
  for (int k = 0; k < c->progeny[5]->hydro.count; k++)
    if (c->progeny[5]->hydro.parts[k].x[0] < pivot[0] ||
        c->progeny[5]->hydro.parts[k].x[1] >= pivot[1] ||
        c->progeny[5]->hydro.parts[k].x[2] < pivot[2])
1024
      error("Sorting failed (progeny=5).");
1025
1026
1027
1028
  for (int k = 0; k < c->progeny[6]->hydro.count; k++)
    if (c->progeny[6]->hydro.parts[k].x[0] < pivot[0] ||
        c->progeny[6]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[6]->hydro.parts[k].x[2] >= pivot[2])
1029
      error("Sorting failed (progeny=6).");
1030
1031
1032
1033
  for (int k = 0; k < c->progeny[7]->hydro.count; k++)
    if (c->progeny[7]->hydro.parts[k].x[0] < pivot[0] ||
        c->progeny[7]->hydro.parts[k].x[1] < pivot[1] ||
        c->progeny[7]->hydro.parts[k].x[2] < pivot[2])
1034
      error("Sorting failed (progeny=7).");
1035
#endif
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
1071
1072
          if (sparts[j].gpart)
            sparts[j].gpart->id_or_neg_offset = -(j + sparts_offset);
1073
1074
1075
1076
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
1077
1078
        if (sparts[k].gpart)
          sparts[k].gpart->id_or_neg_offset = -(k + sparts_offset);
1079
1080
1081
1082
1083
1084
1085
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
1086
1087
    c->progeny[k]->stars.count = bucket_count[k];
    c->progeny[k]->stars.parts = &c->stars.parts[bucket_offset[k]];
1088
1089
1090
  }

  /* Finally, do the same song and dance for the gparts. */
1091
1092
1093
1094
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
1095
1096
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
1097
    bucket_count[bid]++;
1098
    gbuff[k].ind = bid;
1099
  }