cell.c 90.3 KB
Newer Older
1
/*******************************************************************************
2
 * This file is part of SWIFT.
3
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
5
6
7
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk)
 *               2015 Peter W. Draper (p.w.draper@durham.ac.uk)
 *               2016 John A. Regan (john.a.regan@durham.ac.uk)
 *                    Tom Theuns (tom.theuns@durham.ac.uk)
8
 *
9
10
11
12
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
13
 *
14
15
16
17
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
18
 *
19
20
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
 *
22
23
24
25
26
27
28
29
30
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
35

36
37
/* MPI headers. */
#ifdef WITH_MPI
38
#include <mpi.h>
39
40
#endif

41
42
/* Switch off timers. */
#ifdef TIMER
43
#undef TIMER
44
45
#endif

46
47
48
/* This object's header. */
#include "cell.h"

49
/* Local headers. */
50
#include "active.h"
51
#include "atomic.h"
52
#include "chemistry.h"
53
#include "drift.h"
54
#include "engine.h"
55
#include "error.h"
56
#include "gravity.h"
57
#include "hydro.h"
Matthieu Schaller's avatar
Matthieu Schaller committed
58
#include "hydro_properties.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
59
#include "memswap.h"
60
#include "minmax.h"
61
#include "scheduler.h"
62
#include "space.h"
63
#include "space_getsid.h"
64
#include "timers.h"
65

66
67
68
/* Global variables. */
int cell_next_tag = 0;

69
70
71
72
73
/**
 * @brief Get the size of the cell subtree.
 *
 * @param c The #cell.
 */
74
int cell_getsize(struct cell *c) {
75

Pedro Gonnet's avatar
Pedro Gonnet committed
76
77
  /* Number of cells in this subtree. */
  int count = 1;
78

79
80
  /* Sum up the progeny if split. */
  if (c->split)
Pedro Gonnet's avatar
Pedro Gonnet committed
81
    for (int k = 0; k < 8; k++)
82
83
84
85
86
87
      if (c->progeny[k] != NULL) count += cell_getsize(c->progeny[k]);

  /* Return the final count. */
  return count;
}

88
/**
89
 * @brief Link the cells recursively to the given #part array.
90
91
92
93
94
95
 *
 * @param c The #cell.
 * @param parts The #part array.
 *
 * @return The number of particles linked.
 */
96
int cell_link_parts(struct cell *c, struct part *parts) {
97

98
99
100
  c->parts = parts;

  /* Fill the progeny recursively, depth-first. */
Pedro Gonnet's avatar
Pedro Gonnet committed
101
102
103
104
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
105
        offset += cell_link_parts(c->progeny[k], &parts[offset]);
Pedro Gonnet's avatar
Pedro Gonnet committed
106
107
    }
  }
108

109
  /* Return the total number of linked particles. */
110
111
  return c->count;
}
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/**
 * @brief Link the cells recursively to the given #gpart array.
 *
 * @param c The #cell.
 * @param gparts The #gpart array.
 *
 * @return The number of particles linked.
 */
int cell_link_gparts(struct cell *c, struct gpart *gparts) {

  c->gparts = gparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_gparts(c->progeny[k], &gparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->gcount;
}

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/**
 * @brief Link the cells recursively to the given #spart array.
 *
 * @param c The #cell.
 * @param sparts The #spart array.
 *
 * @return The number of particles linked.
 */
int cell_link_sparts(struct cell *c, struct spart *sparts) {

  c->sparts = sparts;

  /* Fill the progeny recursively, depth-first. */
  if (c->split) {
    int offset = 0;
    for (int k = 0; k < 8; k++) {
      if (c->progeny[k] != NULL)
        offset += cell_link_sparts(c->progeny[k], &sparts[offset]);
    }
  }

  /* Return the total number of linked particles. */
  return c->scount;
}

163
164
165
166
167
168
169
170
171
/**
 * @brief Pack the data of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
 * @param pc Pointer to an array of packed cells in which the
 *      cells will be packed.
 *
 * @return The number of packed cells.
 */
172
int cell_pack(struct cell *restrict c, struct pcell *restrict pc) {
173

174
175
#ifdef WITH_MPI

176
177
  /* Start by packing the data of the current cell. */
  pc->h_max = c->h_max;
178
179
180
181
  pc->ti_hydro_end_min = c->ti_hydro_end_min;
  pc->ti_hydro_end_max = c->ti_hydro_end_max;
  pc->ti_gravity_end_min = c->ti_gravity_end_min;
  pc->ti_gravity_end_max = c->ti_gravity_end_max;
182
183
  pc->ti_old_part = c->ti_old_part;
  pc->ti_old_gpart = c->ti_old_gpart;
184
  pc->ti_old_multipole = c->ti_old_multipole;
185
  pc->count = c->count;
186
  pc->gcount = c->gcount;
187
  pc->scount = c->scount;
188
  c->tag = pc->tag = atomic_inc(&cell_next_tag) % cell_max_tag;
189
190
191
#ifdef SWIFT_DEBUG_CHECKS
  pc->cellID = c->cellID;
#endif
192
193

  /* Fill in the progeny, depth-first recursion. */
Pedro Gonnet's avatar
Pedro Gonnet committed
194
195
  int count = 1;
  for (int k = 0; k < 8; k++)
196
197
198
199
200
201
202
    if (c->progeny[k] != NULL) {
      pc->progeny[k] = count;
      count += cell_pack(c->progeny[k], &pc[count]);
    } else
      pc->progeny[k] = -1;

  /* Return the number of packed cells used. */
203
204
  c->pcell_size = count;
  return count;
205
206
207
208
209

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
210
211
}

212
213
214
215
216
217
218
219
220
/**
 * @brief Unpack the data of a given cell and its sub-cells.
 *
 * @param pc An array of packed #pcell.
 * @param c The #cell in which to unpack the #pcell.
 * @param s The #space in which the cells are created.
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
221
222
int cell_unpack(struct pcell *restrict pc, struct cell *restrict c,
                struct space *restrict s) {
223
224
225
226
227

#ifdef WITH_MPI

  /* Unpack the current pcell. */
  c->h_max = pc->h_max;
228
229
230
231
  c->ti_hydro_end_min = pc->ti_hydro_end_min;
  c->ti_hydro_end_max = pc->ti_hydro_end_max;
  c->ti_gravity_end_min = pc->ti_gravity_end_min;
  c->ti_gravity_end_max = pc->ti_gravity_end_max;
232
233
  c->ti_old_part = pc->ti_old_part;
  c->ti_old_gpart = pc->ti_old_gpart;
234
  c->ti_old_multipole = pc->ti_old_multipole;
235
236
237
238
  c->count = pc->count;
  c->gcount = pc->gcount;
  c->scount = pc->scount;
  c->tag = pc->tag;
239
240
241
#ifdef SWIFT_DEBUG_CHECKS
  c->cellID = pc->cellID;
#endif
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

  /* Number of new cells created. */
  int count = 1;

  /* Fill the progeny recursively, depth-first. */
  for (int k = 0; k < 8; k++)
    if (pc->progeny[k] >= 0) {
      struct cell *temp;
      space_getcells(s, 1, &temp);
      temp->count = 0;
      temp->gcount = 0;
      temp->scount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->width[0] = c->width[0] / 2;
      temp->width[1] = c->width[1] / 2;
      temp->width[2] = c->width[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->width[0];
      if (k & 2) temp->loc[1] += temp->width[1];
      if (k & 1) temp->loc[2] += temp->width[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->dx_max_part = 0.f;
      temp->dx_max_sort = 0.f;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
      c->split = 1;
      count += cell_unpack(&pc[pc->progeny[k]], temp, s);
    }

  /* Return the total number of unpacked cells. */
  c->pcell_size = count;
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

285
286
287
288
/**
 * @brief Pack the time information of the given cell and all it's sub-cells.
 *
 * @param c The #cell.
289
 * @param pcells (output) The end-of-timestep information we pack into
290
291
292
 *
 * @return The number of packed cells.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
293
294
int cell_pack_end_step(struct cell *restrict c,
                       struct pcell_step *restrict pcells) {
295

296
297
#ifdef WITH_MPI

298
  /* Pack this cell's data. */
299
  pcells[0].ti_hydro_end_min = c->ti_hydro_end_min;
300
  pcells[0].ti_hydro_end_max = c->ti_hydro_end_max;
301
  pcells[0].ti_gravity_end_min = c->ti_gravity_end_min;
302
  pcells[0].ti_gravity_end_max = c->ti_gravity_end_max;
303
  pcells[0].dx_max_part = c->dx_max_part;
304

305
306
307
308
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
309
      count += cell_pack_end_step(c->progeny[k], &pcells[count]);
310
311
312
313
    }

  /* Return the number of packed values. */
  return count;
314
315
316
317
318

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
319
320
}

321
322
323
324
/**
 * @brief Unpack the time information of a given cell and its sub-cells.
 *
 * @param c The #cell
325
 * @param pcells The end-of-timestep information to unpack
326
327
328
 *
 * @return The number of cells created.
 */
Matthieu Schaller's avatar
Matthieu Schaller committed
329
330
int cell_unpack_end_step(struct cell *restrict c,
                         struct pcell_step *restrict pcells) {
331

332
333
#ifdef WITH_MPI

334
  /* Unpack this cell's data. */
335
  c->ti_hydro_end_min = pcells[0].ti_hydro_end_min;
336
  c->ti_hydro_end_max = pcells[0].ti_hydro_end_max;
337
  c->ti_gravity_end_min = pcells[0].ti_gravity_end_min;
338
  c->ti_gravity_end_max = pcells[0].ti_gravity_end_max;
339
  c->dx_max_part = pcells[0].dx_max_part;
340

341
342
343
344
  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
345
      count += cell_unpack_end_step(c->progeny[k], &pcells[count]);
346
347
348
    }

  /* Return the number of packed values. */
349
  return count;
350
351
352
353
354

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
355
}
356

357
/**
Matthieu Schaller's avatar
Matthieu Schaller committed
358
359
 * @brief Pack the multipole information of the given cell and all it's
 * sub-cells.
360
361
362
363
364
365
366
 *
 * @param c The #cell.
 * @param pcells (output) The multipole information we pack into
 *
 * @return The number of packed cells.
 */
int cell_pack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
367
                         struct gravity_tensors *restrict pcells) {
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

#ifdef WITH_MPI

  /* Pack this cell's data. */
  pcells[0] = *c->multipole;

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_pack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

/**
 * @brief Unpack the multipole information of a given cell and its sub-cells.
 *
 * @param c The #cell
 * @param pcells The multipole information to unpack
 *
 * @return The number of cells created.
 */
int cell_unpack_multipoles(struct cell *restrict c,
Matthieu Schaller's avatar
Matthieu Schaller committed
399
                           struct gravity_tensors *restrict pcells) {
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

#ifdef WITH_MPI

  /* Unpack this cell's data. */
  *c->multipole = pcells[0];

  /* Fill in the progeny, depth-first recursion. */
  int count = 1;
  for (int k = 0; k < 8; k++)
    if (c->progeny[k] != NULL) {
      count += cell_unpack_multipoles(c->progeny[k], &pcells[count]);
    }

  /* Return the number of packed values. */
  return count;

#else
  error("SWIFT was not compiled with MPI support.");
  return 0;
#endif
}

422
/**
423
 * @brief Lock a cell for access to its array of #part and hold its parents.
424
425
 *
 * @param c The #cell.
426
 * @return 0 on success, 1 on failure
427
 */
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
int cell_locktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->hold || lock_trylock(&c->lock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->hold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
450
  struct cell *finger;
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->lock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->hold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->lock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
473
474
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
475
      atomic_dec(&finger2->hold);
476
477
478
479
480
481
482
483
484
485

    /* Unlock this cell. */
    if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

486
487
488
489
490
491
/**
 * @brief Lock a cell for access to its array of #gpart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
int cell_glocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->ghold || lock_trylock(&c->glock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->ghold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
Pedro Gonnet's avatar
Pedro Gonnet committed
514
  struct cell *finger;
515
516
517
518
519
520
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->glock) != 0) break;

    /* Increment the hold. */
521
    atomic_inc(&finger->ghold);
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    /* Unlock the cell. */
    if (lock_unlock(&finger->glock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
Pedro Gonnet's avatar
Pedro Gonnet committed
537
538
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
539
      atomic_dec(&finger2->ghold);
540
541
542
543
544
545
546
547
548

    /* Unlock this cell. */
    if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/**
 * @brief Lock a cell for access to its #multipole and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_mlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->mhold || lock_trylock(&c->mlock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->mhold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->mlock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->mhold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->mlock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->mhold);

    /* Unlock this cell. */
    if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/**
 * @brief Lock a cell for access to its array of #spart and hold its parents.
 *
 * @param c The #cell.
 * @return 0 on success, 1 on failure
 */
int cell_slocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to lock this cell. */
  if (c->shold || lock_trylock(&c->slock) != 0) {
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Did somebody hold this cell in the meantime? */
  if (c->shold) {

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }

  /* Climb up the tree and lock/hold/unlock. */
  struct cell *finger;
  for (finger = c->parent; finger != NULL; finger = finger->parent) {

    /* Lock this cell. */
    if (lock_trylock(&finger->slock) != 0) break;

    /* Increment the hold. */
    atomic_inc(&finger->shold);

    /* Unlock the cell. */
    if (lock_unlock(&finger->slock) != 0) error("Failed to unlock cell.");
  }

  /* If we reached the top of the tree, we're done. */
  if (finger == NULL) {
    TIMER_TOC(timer_locktree);
    return 0;
  }

  /* Otherwise, we hit a snag. */
  else {

    /* Undo the holds up to finger. */
    for (struct cell *finger2 = c->parent; finger2 != finger;
         finger2 = finger2->parent)
      atomic_dec(&finger2->shold);

    /* Unlock this cell. */
    if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

    /* Admit defeat. */
    TIMER_TOC(timer_locktree);
    return 1;
  }
}

678
/**
679
 * @brief Unlock a cell's parents for access to #part array.
680
681
682
 *
 * @param c The #cell.
 */
683
684
685
686
687
688
689
690
void cell_unlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->lock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
691
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
692
    atomic_dec(&finger->hold);
693
694
695
696

  TIMER_TOC(timer_locktree);
}

697
698
699
700
701
/**
 * @brief Unlock a cell's parents for access to #gpart array.
 *
 * @param c The #cell.
 */
702
703
704
705
706
707
708
709
void cell_gunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->glock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
Pedro Gonnet's avatar
Pedro Gonnet committed
710
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
711
    atomic_dec(&finger->ghold);
712
713
714
715

  TIMER_TOC(timer_locktree);
}

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
/**
 * @brief Unlock a cell's parents for access to its #multipole.
 *
 * @param c The #cell.
 */
void cell_munlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->mlock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->mhold);

  TIMER_TOC(timer_locktree);
}

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/**
 * @brief Unlock a cell's parents for access to #spart array.
 *
 * @param c The #cell.
 */
void cell_sunlocktree(struct cell *c) {

  TIMER_TIC

  /* First of all, try to unlock this cell. */
  if (lock_unlock(&c->slock) != 0) error("Failed to unlock cell.");

  /* Climb up the tree and unhold the parents. */
  for (struct cell *finger = c->parent; finger != NULL; finger = finger->parent)
    atomic_dec(&finger->shold);

  TIMER_TOC(timer_locktree);
}

754
755
756
757
/**
 * @brief Sort the parts into eight bins along the given pivots.
 *
 * @param c The #cell array to be sorted.
758
759
 * @param parts_offset Offset of the cell parts array relative to the
 *        space's parts array, i.e. c->parts - s->parts.
760
761
 * @param sparts_offset Offset of the cell sparts array relative to the
 *        space's sparts array, i.e. c->sparts - s->sparts.
762
763
 * @param buff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices.
764
765
 * @param sbuff A buffer with at least max(c->scount, c->gcount) entries,
 *        used for sorting indices for the sparts.
Peter W. Draper's avatar
Peter W. Draper committed
766
767
 * @param gbuff A buffer with at least max(c->count, c->gcount) entries,
 *        used for sorting indices for the gparts.
768
 */
769
770
void cell_split(struct cell *c, ptrdiff_t parts_offset, ptrdiff_t sparts_offset,
                struct cell_buff *buff, struct cell_buff *sbuff,
771
                struct cell_buff *gbuff) {
772

773
  const int count = c->count, gcount = c->gcount, scount = c->scount;
774
775
776
  struct part *parts = c->parts;
  struct xpart *xparts = c->xparts;
  struct gpart *gparts = c->gparts;
Matthieu Schaller's avatar
Matthieu Schaller committed
777
  struct spart *sparts = c->sparts;
778
779
780
781
782
783
  const double pivot[3] = {c->loc[0] + c->width[0] / 2,
                           c->loc[1] + c->width[1] / 2,
                           c->loc[2] + c->width[2] / 2};
  int bucket_count[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  int bucket_offset[9];

784
785
786
#ifdef SWIFT_DEBUG_CHECKS
  /* Check that the buffs are OK. */
  for (int k = 0; k < count; k++) {
787
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
788
        buff[k].x[2] != parts[k].x[2])
789
790
      error("Inconsistent buff contents.");
  }
791
792
793
794
795
796
797
798
799
800
  for (int k = 0; k < gcount; k++) {
    if (gbuff[k].x[0] != gparts[k].x[0] || gbuff[k].x[1] != gparts[k].x[1] ||
        gbuff[k].x[2] != gparts[k].x[2])
      error("Inconsistent gbuff contents.");
  }
  for (int k = 0; k < scount; k++) {
    if (sbuff[k].x[0] != sparts[k].x[0] || sbuff[k].x[1] != sparts[k].x[1] ||
        sbuff[k].x[2] != sparts[k].x[2])
      error("Inconsistent sbuff contents.");
  }
801
#endif /* SWIFT_DEBUG_CHECKS */
802
803
804

  /* Fill the buffer with the indices. */
  for (int k = 0; k < count; k++) {
805
806
    const int bid = (buff[k].x[0] >= pivot[0]) * 4 +
                    (buff[k].x[1] >= pivot[1]) * 2 + (buff[k].x[2] >= pivot[2]);
807
    bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
808
    buff[k].ind = bid;
809
  }
810

811
812
813
814
815
  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
816
817
  }

818
819
820
821
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
Matthieu Schaller's avatar
Matthieu Schaller committed
822
      int bid = buff[k].ind;
823
824
825
      if (bid != bucket) {
        struct part part = parts[k];
        struct xpart xpart = xparts[k];
826
        struct cell_buff temp_buff = buff[k];
827
828
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
Matthieu Schaller's avatar
Matthieu Schaller committed
829
          while (buff[j].ind == bid) {
830
831
832
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
833
834
          memswap(&parts[j], &part, sizeof(struct part));
          memswap(&xparts[j], &xpart, sizeof(struct xpart));
835
          memswap(&buff[j], &temp_buff, sizeof(struct cell_buff));
836
837
          if (parts[j].gpart)
            parts[j].gpart->id_or_neg_offset = -(j + parts_offset);
838
          bid = temp_buff.ind;
839
840
841
        }
        parts[k] = part;
        xparts[k] = xpart;
842
        buff[k] = temp_buff;
843
844
        if (parts[k].gpart)
          parts[k].gpart->id_or_neg_offset = -(k + parts_offset);
845
      }
846
      bucket_count[bid]++;
847
848
849
850
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
851
  for (int k = 0; k < 8; k++) {
852
853
854
    c->progeny[k]->count = bucket_count[k];
    c->progeny[k]->parts = &c->parts[bucket_offset[k]];
    c->progeny[k]->xparts = &c->xparts[bucket_offset[k]];
855
856
  }

857
#ifdef SWIFT_DEBUG_CHECKS
858
859
860
861
862
863
864
865
  /* Check that the buffs are OK. */
  for (int k = 1; k < count; k++) {
    if (buff[k].ind < buff[k - 1].ind) error("Buff not sorted.");
    if (buff[k].x[0] != parts[k].x[0] || buff[k].x[1] != parts[k].x[1] ||
        buff[k].x[2] != parts[k].x[2])
      error("Inconsistent buff contents (k=%i).", k);
  }

866
  /* Verify that _all_ the parts have been assigned to a cell. */
867
868
869
870
871
872
873
874
  for (int k = 1; k < 8; k++)
    if (&c->progeny[k - 1]->parts[c->progeny[k - 1]->count] !=
        c->progeny[k]->parts)
      error("Particle sorting failed (internal consistency).");
  if (c->progeny[0]->parts != c->parts)
    error("Particle sorting failed (left edge).");
  if (&c->progeny[7]->parts[c->progeny[7]->count] != &c->parts[count])
    error("Particle sorting failed (right edge).");
875
876

  /* Verify a few sub-cells. */
877
  for (int k = 0; k < c->progeny[0]->count; k++)
878
879
880
    if (c->progeny[0]->parts[k].x[0] >= pivot[0] ||
        c->progeny[0]->parts[k].x[1] >= pivot[1] ||
        c->progeny[0]->parts[k].x[2] >= pivot[2])
881
882
      error("Sorting failed (progeny=0).");
  for (int k = 0; k < c->progeny[1]->count; k++)
883
884
885
    if (c->progeny[1]->parts[k].x[0] >= pivot[0] ||
        c->progeny[1]->parts[k].x[1] >= pivot[1] ||
        c->progeny[1]->parts[k].x[2] < pivot[2])
886
887
      error("Sorting failed (progeny=1).");
  for (int k = 0; k < c->progeny[2]->count; k++)
888
889
890
    if (c->progeny[2]->parts[k].x[0] >= pivot[0] ||
        c->progeny[2]->parts[k].x[1] < pivot[1] ||
        c->progeny[2]->parts[k].x[2] >= pivot[2])
891
      error("Sorting failed (progeny=2).");
892
  for (int k = 0; k < c->progeny[3]->count; k++)
893
894
895
    if (c->progeny[3]->parts[k].x[0] >= pivot[0] ||
        c->progeny[3]->parts[k].x[1] < pivot[1] ||
        c->progeny[3]->parts[k].x[2] < pivot[2])
896
897
      error("Sorting failed (progeny=3).");
  for (int k = 0; k < c->progeny[4]->count; k++)
898
899
900
    if (c->progeny[4]->parts[k].x[0] < pivot[0] ||
        c->progeny[4]->parts[k].x[1] >= pivot[1] ||
        c->progeny[4]->parts[k].x[2] >= pivot[2])
901
902
      error("Sorting failed (progeny=4).");
  for (int k = 0; k < c->progeny[5]->count; k++)
903
904
905
    if (c->progeny[5]->parts[k].x[0] < pivot[0] ||
        c->progeny[5]->parts[k].x[1] >= pivot[1] ||
        c->progeny[5]->parts[k].x[2] < pivot[2])
906
907
      error("Sorting failed (progeny=5).");
  for (int k = 0; k < c->progeny[6]->count; k++)
908
909
910
    if (c->progeny[6]->parts[k].x[0] < pivot[0] ||
        c->progeny[6]->parts[k].x[1] < pivot[1] ||
        c->progeny[6]->parts[k].x[2] >= pivot[2])
911
912
      error("Sorting failed (progeny=6).");
  for (int k = 0; k < c->progeny[7]->count; k++)
913
914
915
    if (c->progeny[7]->parts[k].x[0] < pivot[0] ||
        c->progeny[7]->parts[k].x[1] < pivot[1] ||
        c->progeny[7]->parts[k].x[2] < pivot[2])
916
      error("Sorting failed (progeny=7).");
917
#endif
918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
  /* Now do the same song and dance for the sparts. */
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < scount; k++) {
    const int bid = (sbuff[k].x[0] > pivot[0]) * 4 +
                    (sbuff[k].x[1] > pivot[1]) * 2 + (sbuff[k].x[2] > pivot[2]);
    bucket_count[bid]++;
    sbuff[k].ind = bid;
  }

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
  }

  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
      int bid = sbuff[k].ind;
      if (bid != bucket) {
        struct spart spart = sparts[k];
        struct cell_buff temp_buff = sbuff[k];
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
          while (sbuff[j].ind == bid) {
            j++;
            bucket_count[bid]++;
          }
          memswap(&sparts[j], &spart, sizeof(struct spart));
          memswap(&sbuff[j], &temp_buff, sizeof(struct cell_buff));
953
954
          if (sparts[j].gpart)
            sparts[j].gpart->id_or_neg_offset = -(j + sparts_offset);
955
956
957
958
          bid = temp_buff.ind;
        }
        sparts[k] = spart;
        sbuff[k] = temp_buff;
959
960
        if (sparts[k].gpart)
          sparts[k].gpart->id_or_neg_offset = -(k + sparts_offset);
961
962
963
964
965
966
967
968
969
970
971
972
      }
      bucket_count[bid]++;
    }
  }

  /* Store the counts and offsets. */
  for (int k = 0; k < 8; k++) {
    c->progeny[k]->scount = bucket_count[k];
    c->progeny[k]->sparts = &c->sparts[bucket_offset[k]];
  }

  /* Finally, do the same song and dance for the gparts. */
973
974
975
976
  for (int k = 0; k < 8; k++) bucket_count[k] = 0;

  /* Fill the buffer with the indices. */
  for (int k = 0; k < gcount; k++) {
977
978
    const int bid = (gbuff[k].x[0] > pivot[0]) * 4 +
                    (gbuff[k].x[1] > pivot[1]) * 2 + (gbuff[k].x[2] > pivot[2]);
979
    bucket_count[bid]++;
980
    gbuff[k].ind = bid;
981
  }
982
983
984
985
986
987

  /* Set the buffer offsets. */
  bucket_offset[0] = 0;
  for (int k = 1; k <= 8; k++) {
    bucket_offset[k] = bucket_offset[k - 1] + bucket_count[k - 1];
    bucket_count[k - 1] = 0;
988
989
  }

990
991
992
993
  /* Run through the buckets, and swap particles to their correct spot. */
  for (int bucket = 0; bucket < 8; bucket++) {
    for (int k = bucket_offset[bucket] + bucket_count[bucket];
         k < bucket_offset[bucket + 1]; k++) {
994
      int bid = gbuff[k].ind;
995
996
      if (bid != bucket) {
        struct gpart gpart = gparts[k];
997
        struct cell_buff temp_buff = gbuff[k];
998
999
        while (bid != bucket) {
          int j = bucket_offset[bid] + bucket_count[bid]++;
1000
          while (gbuff[j].ind == bid) {
1001
1002
1003
            j++;
            bucket_count[bid]++;
          }
Pedro Gonnet's avatar
Pedro Gonnet committed
1004
          memswap(&gparts[j], &gpart, sizeof(struct gpart));
1005
          memswap(&gbuff[j], &temp_buff, sizeof(struct cell_buff));
1006
1007
1008
1009
1010
1011
1012
          if (gparts[j].type == swift_type_gas) {
            parts[-gparts[j].id_or_neg_offset - parts_offset].gpart =
                &gparts[j];
          } else if (gparts[j].type == swift_type_star) {
            sparts[-gparts[j].id_or_neg_offset - sparts_offset].gpart =
                &gparts[j];
          }
1013
          bid = temp_buff.ind;
1014
1015
        }
        gparts[k] = gpart;
1016
        gbuff[k] = temp_buff;
1017
1018
1019
1020
1021
1022
        if (gparts[k].type == swift_type_gas) {
          parts[-gparts[k].id_or_neg_offset - parts_offset].gpart = &gparts[k];
        } else if (gparts[k].type == swift_type_star) {
          sparts[-gparts[k].id_or_neg_offset - sparts_offset].gpart =
              &gparts[k];
        }
1023
      }
1024
      bucket_count[bid]++;
1025
1026
1027
1028
    }
  }

  /* Store the counts and offsets. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1029
  for (int k = 0; k < 8; k++) {
1030
1031
    c->progeny[k]->gcount = bucket_count[k];
    c->progeny[k]->gparts = &c->gparts[bucket_offset[k]];
1032
1033
  }
}
1034

1035
1036
1037
1038
/**
 * @brief Sanitizes the smoothing length values of cells by setting large
 * outliers to more sensible values.
 *
1039
1040
 * Each cell with <1000 part will be processed. We limit h to be the size of
 * the cell and replace 0s with a good estimate.
1041
1042
 *
 * @param c The cell.
1043
 * @param treated Has the cell already been sanitized at this level ?
1044
 */
1045
void cell_sanitize(struct cell *c, int treated) {
1046
1047
1048

  const int count = c->count;
  struct part *parts = c->parts;
1049
  float h_max = 0.f;
1050

1051
1052
  /* Treat cells will <1000 particles */
  if (count < 1000 && !treated) {
1053

1054
1055
    /* Get an upper bound on h */
    const float upper_h_max = c->dmin / (1.2f * kernel_gamma);
1056

1057
1058
1059
1060
1061
1062
    /* Apply it */
    for (int i = 0; i < count; ++i) {
      if (parts[i].h == 0.f || parts[i].h > upper_h_max)
        parts[i].h = upper_h_max;
    }
  }
1063

1064
1065
  /* Recurse and gather the new h_max values */
  if (c->split) {
1066

1067
1068
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
1069

1070
1071
        /* Recurse */
        cell_sanitize(c->progeny[k], (count < 1000));
1072

1073
1074
1075
1076
        /* And collect */
        h_max = max(h_max, c->progeny[k]->h_max);
      }
    }
1077
1078
  } else {

1079
1080
    /* Get the new value of h_max */
    for (int i = 0; i < count; ++i) h_max = max(h_max, parts[i].h);
1081
  }
1082
1083
1084

  /* Record the change */
  c->h_max = h_max;
1085
1086
}

Matthieu Schaller's avatar
Matthieu Schaller committed
1087
1088
1089
1090
1091
1092
/**
 * @brief Cleans the links in a given cell.
 *
 * @param c Cell to act upon
 * @param data Unused parameter
 */
1093
void cell_clean_links(struct cell *c, void *data) {
Matthieu Schaller's avatar
Matthieu Schaller committed
1094
  c->density = NULL;
1095
  c->gradient = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1096
  c->force = NULL;
1097
  c->grav = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
1098
}
1099

1100
/**
1101
 * @brief Checks that the #part in a cell are at the
1102
 * current point in time
1103
1104
1105
1106
1107
1108
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
1109
void cell_check_part_drift_point(struct cell *c, void *data) {
1110

1111
1112
#ifdef SWIFT_DEBUG_CHECKS

1113
  const integertime_t ti_drift = *(integertime_t *)data;
1114

1115
  /* Only check local cells */
1116
  if (c->nodeID != engine_rank) return;
1117

1118
1119
1120
  if (c->ti_old_part != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_part=%lld ti_drift=%lld",
          c->ti_old_part, ti_drift);
1121

1122
1123
  for (int i = 0; i < c->count; ++i)
    if (c->parts[i].ti_drift != ti_drift)
1124
      error("part in an incorrect time-zone! p->ti_drift=%lld ti_drift=%lld",
1125
            c->parts[i].ti_drift, ti_drift);
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

/**
 * @brief Checks that the #gpart and #spart in a cell are at the
 * current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_gpart_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  /* Only check local cells */
  if (c->nodeID != engine_rank) return;

  if (c->ti_old_gpart != ti_drift)
    error("Cell in an incorrect time-zone! c->ti_old_gpart=%lld ti_drift=%lld",
          c->ti_old_gpart, ti_drift);
1152

1153
1154
  for (int i = 0; i < c->gcount; ++i)
    if (c->gparts[i].ti_drift != ti_drift)
1155
      error("g-part in an incorrect time-zone! gp->ti_drift=%lld ti_drift=%lld",
1156
            c->gparts[i].ti_drift, ti_drift);
1157

1158
1159
1160
1161
  for (int i = 0; i < c->scount; ++i)
    if (c->sparts[i].ti_drift != ti_drift)
      error("s-part in an incorrect time-zone! sp->ti_drift=%lld ti_drift=%lld",
            c->sparts[i].ti_drift, ti_drift);
1162
1163
1164
#else
  error("Calling debugging code without debugging flag activated.");
#endif
1165
1166
}

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/**
 * @brief Checks that the multipole of a cell is at the current point in time
 *
 * Calls error() if the cell is not at the current time.
 *
 * @param c Cell to act upon
 * @param data The current time on the integer time-line
 */
void cell_check_multipole_drift_point(struct cell *c, void *data) {

#ifdef SWIFT_DEBUG_CHECKS

  const integertime_t ti_drift = *(integertime_t *)data;

  if (c->ti_old_multipole != ti_drift)
    error(
        "Cell multipole in an incorrect time-zone! c->ti_old_multipole=%lld "
1184
1185
        "ti_drift=%lld (depth=%d)",
        c->ti_old_multipole, ti_drift, c->depth);
1186
1187
1188
1189
1190
1191

#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/**
 * @brief Resets all the individual cell task counters to 0.
 *
 * Should only be used for debugging purposes.
 *
 * @param c The #cell to reset.
 */
void cell_reset_task_counters(struct cell *c) {

#ifdef SWIFT_DEBUG_CHECKS
  for (int t = 0; t < task_type_count; ++t) c->tasks_executed[t] = 0;
  for (int t = 0; t < task_subtype_count; ++t) c->subtasks_executed[t] = 0;
#else
  error("Calling debugging code without debugging flag activated.");
#endif
}

1209
1210
1211
1212
/**
 * @brief Recursively construct all the multipoles in a cell hierarchy.
 *
 * @param c The #cell.
Matthieu Schaller's avatar
Matthieu Schaller committed
1213
 * @param ti_current The current integer time.
1214
1215
1216
1217
1218
1219
1220
1221
 */
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {

  /* Reset everything */
  gravity_reset(c->multipole);

  if (c->split) {

1222
1223
1224
1225
1226
1227
    /* Start by recursing */
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL)
        cell_make_multipoles(c->progeny[k], ti_current);
    }

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    /* Compute CoM of all progenies */
    double CoM[3] = {0., 0., 0.};
    double mass = 0.;

    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct gravity_tensors *m = c->progeny[k]->multipole;
        CoM[0] += m->CoM[0] * m->m_pole.M_000;
        CoM[1] += m->CoM[1] * m->m_pole.M_000;
        CoM[2] += m->CoM[2] * m->m_pole.M_000;
        mass += m->m_pole.M_000;
      }
    }
1241
1242
1243
1244
1245

    const double mass_inv = 1. / mass;
    c->multipole->CoM[0] = CoM[0] * mass_inv;
    c->multipole->CoM[1] = CoM[1] * mass_inv;
    c->multipole->CoM[2] = CoM[2] * mass_inv;
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

    /* Now shift progeny multipoles and add them up */
    struct multipole temp;
    double r_max = 0.;
    for (int k = 0; k < 8; ++k) {
      if (c->progeny[k] != NULL) {
        const struct cell *cp = c->progeny[k];
        const struct multipole *m = &cp->multipole->m_pole;

        /* Contribution to multipole */
        gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
        gravity_multipole_add(&c->multipole->m_pole, &temp);

        /* Upper limit of max CoM<->gpart distance */
        const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
        const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
        const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
        const double r2 = dx * dx + dy * dy + dz * dz;
        r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
      }
    }
    /* Alternative upper limit of max CoM<->gpart distance */
1268
    const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] * 0.5
1269
1270
                          ? c->multipole->CoM[0] - c->loc[0]
                          : c->loc[0] + c->width[0] - c->multipole->CoM[0];
1271
    const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] * 0.5
1272
1273
                          ? c->multipole->CoM[1] - c->loc[1]
                          : c->loc[1] + c->width[1] - c->multipole->CoM[1];
1274
    const double dz = c->multipole->CoM[2]