space.c 33.1 KB
Newer Older
Pedro Gonnet's avatar
Pedro Gonnet committed
1
/*******************************************************************************
2
 * This file is part of SWIFT.
Pedro Gonnet's avatar
Pedro Gonnet committed
3
 * Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
4
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
5
6
7
8
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
9
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
10
11
12
13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
15
16
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
Pedro Gonnet's avatar
Pedro Gonnet committed
18
19
20
21
22
23
24
25
26
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
44
#include "kernel.h"
#include "lock.h"
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
45

46
47
48
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
49
50
/* Split size. */
int space_splitsize = space_splitsize_default;
51
int space_subsize = space_subsize_default;
52
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
53
54
55

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

84
85
86
87
88
89
90
91
92
93
94
95
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
131

132
/**
133
 * @brief Recursively dismantle a cell tree.
134
135
 *
 */
136
137
138
139
140
141
142
143
144
145
146
147
148
149

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

150
/**
151
 * @brief Re-build the cell grid.
152
 *
153
154
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
155
 */
156
157
158
159
160
161
162
163
164
165
166
167
168

void space_regrid(struct space *s, double cell_max) {

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
  // ticks tic;

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
169
    }
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
      error("Failed to aggreggate the rebuild flag accross nodes.");
    h_max = buff;
  }
#endif
  message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
256
        }
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    /* Be verbose about the change. */
    message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1], cdim[2]);
    fflush(stdout);

  } /* re-build upper-level cells? */
  // message( "rebuilding upper-level cells took %.3f ms." , (double)(getticks()
  // - tic) / CPU_TPS * 1000 );

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
      s->cells[k].kick1 = NULL;
      s->cells[k].kick2 = NULL;
      s->cells[k].super = &s->cells[k];
285
    }
286
287
288
    s->maxdepth = 0;
  }
}
289
290
291
292
293
294
295
296

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
 *
 */
297
298
299

void space_rebuild(struct space *s, double cell_max) {

300
  int j, k, cdim[3], nr_parts = s->nr_parts, nr_gparts = s->nr_gparts;
301
  struct cell *restrict c, *restrict cells;
302
  struct part *restrict p;
303
  int *ind;
304
305
306
307
308
309
310
311
312
313
314
315
  double ih[3], dim[3];
  // ticks tic;

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
  space_regrid(s, cell_max);
  cells = s->cells;

  /* Run through the particles and get their cell index. */
  // tic = getticks();
316
317
  const int ind_size = s->size_parts;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
318
319
320
321
322
323
324
325
326
327
    error("Failed to allocate temporary particle indices.");
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
328
  for (k = 0; k < nr_parts; k++) {
329
    p = &s->parts[k];
330
331
332
333
334
    for (j = 0; j < 3; j++)
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
335
    ind[k] =
336
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
337
    cells[ind[k]].count++;
338
339
340
341
342
343
344
  }
// message( "getting particle indices took %.3f ms." , (double)(getticks() -
// tic) / CPU_TPS * 1000 );

#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
  int nodeID = s->e->nodeID;
345
346
347
348
  for (k = 0; k < nr_parts; k++)
    if (cells[ind[k]].nodeID != nodeID) {
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
349
350
351
352
353
354
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
355
356
357
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
358
359
    }

360
361
362
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
  s->nr_parts =
363
364
      nr_parts + engine_exchange_strays(s->e, nr_parts, &ind[nr_parts],
                                        s->nr_parts - nr_parts);
365
366

  /* Re-allocate the index array if needed.. */
367
368
369
  if (s->nr_parts > ind_size) {
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
370
      error("Failed to allocate temporary particle indices.");
371
372
373
    memcpy(ind_new, ind, sizeof(int) * nr_parts);
    free(ind);
    ind = ind_new;
374
375
376
  }

  /* Assign each particle to its cell. */
377
  for (k = nr_parts; k < s->nr_parts; k++) {
378
    p = &s->parts[k];
379
    ind[k] =
380
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
381
382
383
384
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
385
  }
386
  nr_parts = s->nr_parts;
387
388
389
390
#endif

  /* Sort the parts according to their cells. */
  // tic = getticks();
391
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1);
392
393
394
395
  // message( "parts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the gparts. */
396
  for (k = 0; k < nr_parts; k++)
397
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
398

399
  /* Verify space_sort_struct. */
400
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
401
      if ( ind[k-1] > ind[k] ) {
402
403
          error( "Sort failed!" );
          }
404
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
405
406
407
408
409
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
410
  free(ind);
411
412
413

  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
414
  if ((ind = (int *)malloc(sizeof(int) * s->size_gparts)) == NULL)
415
416
    error("Failed to allocate temporary particle indices.");
  for (k = 0; k < nr_gparts; k++) {
417
    struct gpart *gp = &s->gparts[k];
418
419
420
421
422
    for (j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
423
    ind[k] =
424
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
425
    cells[ind[k]].gcount++;
426
427
428
429
430
431
432
433
  }
  // message( "getting particle indices took %.3f ms." , (double)(getticks() -
  // tic) / CPU_TPS * 1000 );

  /* TODO: Here we should exchange the gparts as well! */

  /* Sort the parts according to their cells. */
  // tic = getticks();
434
  gparts_sort(s->gparts, ind, nr_gparts, 0, s->nr_cells - 1);
435
436
437
438
439
  // message( "gparts_sort took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );

  /* Re-link the parts. */
  for (k = 0; k < nr_gparts; k++)
440
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
441
442

  /* We no longer need the indices as of here. */
443
  free(ind);
444
445
446

  /* Hook the cells up to the parts. */
  // tic = getticks();
447
448
449
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
  for (k = 0; k < s->nr_cells; k++) {
    c = &cells[k];
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
  // message( "hooking up cells took %.3f ms." , (double)(getticks() - tic) /
  // CPU_TPS * 1000 );

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
  // tic = getticks();
465
466
  for (k = 0; k < s->nr_cells; k++) space_split(s, &cells[k]);

467
468
469
  // message( "space_split took %.3f ms." , (double)(getticks() - tic) / CPU_TPS
  // * 1000 );
}
470

471
/**
472
473
 * @brief Sort the particles and condensed particles according to the given
 *indices.
474
475
476
477
478
479
 *
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
 */
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
void space_parts_sort(struct space *s, int *ind, int N, int min, int max) {
  // Populate a parallel_sort structure with the input data.
  struct parallel_sort sort;
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
  space_sort_struct.stack_size = 2 * (max - min) + 10;
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

  // Add the first interval.
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

  // Launch the sorting tasks.
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort));

  /* Verify space_sort_struct. */
  for (int i = 1; i < N; i++)
    if (ind[i - 1] > ind[i])
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i).", i - 1, ind[i - 1], i,
            ind[i]);

  // Clean up.
  free(space_sort_struct.stack);
}
516

517
void space_do_parts_sort() {
518

519
520
521
522
  /* Pointers to the sorting data. */
  int *ind = space_sort_struct.ind;
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
523

524
  /* Main loop. */
525
  while (space_sort_struct.waiting > 0) {
526

527
    /* Grab an interval off the queue. */
528
529
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
530

531
    /* Get the stack entry. */
532
533
534
535
536
537
538
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
    int i = space_sort_struct.stack[qid].i;
    int j = space_sort_struct.stack[qid].j;
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
    space_sort_struct.stack[qid].ready = 0;
539

540
541
    /* Loop over sub-intervals. */
    while (1) {
542

543
      /* Bring beer. */
544
      const int pivot = (min + max) / 2;
545
546

      /* One pass of QuickSort's partitioning. */
547
548
      int ii = i;
      int jj = j;
549
550
551
552
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
553
          int temp_i = ind[ii];
554
555
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
556
          struct part temp_p = parts[ii];
557
558
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
559
          struct xpart temp_xp = xparts[ii];
560
561
562
563
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
564

565
      /* Verify space_sort_struct. */
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
584
585
586
587
588
589
590
591
592
593
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          space_sort_struct.stack[qid].ready = 1;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
594
        }
595

596
597
598
599
600
601
602
603
604
605
606
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
607
608
609
610
611
612
613
614
615
616
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          space_sort_struct.stack[qid].ready = 1;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
617
        }
618

619
620
621
622
623
624
625
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
626

627
628
    } /* loop over sub-intervals. */

629
    atomic_dec(&space_sort_struct.waiting);
630
631

  } /* main loop. */
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
}

void gparts_sort(struct gpart *gparts, int *ind, int N, int min, int max) {

  struct qstack {
    volatile int i, j, min, max;
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
  int i, ii, j, jj, temp_i, qid;
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

667
668
  /* Main loop. */
  while (waiting > 0) {
669

670
671
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
672

673
674
675
676
677
678
679
680
681
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
682

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
701

702
      /* Verify space_sort_struct. */
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
729

730
731
732
733
734
735
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
      } else {

        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
763

764
  /* Verify space_sort_struct. */
765
766
767
768
769
770
771
772
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
773

Pedro Gonnet's avatar
Pedro Gonnet committed
774
/**
775
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
776
777
 */

778
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
779

780
781
782
783
784
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
785

786
787
788
/**
 * @brief Map a function to all particles in a cell recursively.
 *
789
 * @param c The #cell we are working in.
790
791
792
793
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
794
795
796
797
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
798
799
800
801
802
803

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
804

805
806
807
808
809
810
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
811
/**
812
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
813
814
 *
 * @param s The #space we are working in.
815
816
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
817
818
 */

819
820
821
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
822

823
824
  int cid = 0;

825
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
826
827
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
828
}
829

830
831
832
/**
 * @brief Map a function to all particles in a cell recursively.
 *
833
 * @param c The #cell we are working in.
834
835
836
837
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
838

Pedro Gonnet's avatar
Pedro Gonnet committed
839
840
841
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
842

843
844
845
846
847
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
848
849
850
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

851
852
  /* No progeny? */
  if (full || !c->split) fun(c, data);
853
}
Pedro Gonnet's avatar
Pedro Gonnet committed
854
855

/**
856
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
857
858
 *
 * @param s The #space we are working in.
859
 * @param full Map to all cells, including cells with sub-cells.
860
861
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
862
 */
863

864
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
865
                          void (*fun)(struct cell *c, void *data), void *data) {
866

867
  int cid = 0;
868

869
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
870
871
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
872
}
873

Pedro Gonnet's avatar
Pedro Gonnet committed
874
875
876
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
877

878
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
879

880
881
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
882

883
884
885
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
886
887
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
888
}
Pedro Gonnet's avatar
Pedro Gonnet committed
889

890
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
891
                         void (*fun)(struct cell *c, void *data), void *data) {
892

893
  int cid = 0;
894
895

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
896
897
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
898
}
Pedro Gonnet's avatar
Pedro Gonnet committed
899
900
901
902
903
904
905

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
906

907
908
909
void space_split(struct space *s, struct cell *c) {

  int k, count = c->count, gcount = c->gcount, maxdepth = 0;
910
  float h, h_max = 0.0f, dt, dt_min = c->parts[0].dt, dt_max = dt_min;
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
  struct cell *temp;
  struct part *p, *parts = c->parts;
  struct xpart *xp, *xparts = c->xparts;

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
    for (k = 0; k < 8; k++) {
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
    for (k = 0; k < 8; k++)
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
        space_split(s, c->progeny[k]);
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
        dt_min = fminf(dt_min, c->progeny[k]->dt_min);
        dt_max = fmaxf(dt_max, c->progeny[k]->dt_max);
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
    c->dt_min = dt_min;
    c->dt_max = dt_max;
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */

    for (k = 0; k < count; k++) {
      p = &parts[k];
      xp = &xparts[k];
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      dt = p->dt;
      h = p->h;
      if (h > h_max) h_max = h;
      if (dt < dt_min) dt_min = dt;
      if (dt > dt_max) dt_max = dt;
994
    }
995
996
997
998
    c->h_max = h_max;
    c->dt_min = dt_min;
    c->dt_max = dt_max;
  }
999

1000
1001
1002
  /* Set ownership accorind to the start of the parts array. */
  c->owner = ((c->parts - s->parts) % s->nr_parts) * s->nr_queues / s->nr_parts;
}
1003

Pedro Gonnet's avatar
Pedro Gonnet committed
1004
1005
1006
1007
1008
1009
1010
/**
 * @brief Return a used cell to the cell buffer.
 *
 * @param s The #space.
 * @param c The #cell.
 */

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
void space_recycle(struct space *s, struct cell *c) {

  /* Lock the space. */
  lock_lock(&s->lock);

  /* Clear the cell. */
  if (lock_destroy(&c->lock) != 0) error("Failed to destroy spinlock.");

  /* Clear this cell's sort arrays. */
  if (c->sort != NULL) free(c->sort);

  /* Clear the cell data. */
  bzero(c, sizeof(struct cell));

  /* Hook this cell into the buffer. */
  c->next = s->cells_new;
  s->cells_new = c;
  s->tot_cells -= 1;

  /* Unlock the space. */
  lock_unlock_blind(&s->lock);
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1033
1034
1035
1036
1037
1038
1039

/**
 * @brief Get a new empty cell.
 *
 * @param s The #space.
 */

1040
struct cell *space_getcell(struct space *s) {
Pedro Gonnet's avatar
Pedro Gonnet committed
1041

1042
1043
  struct cell *c;
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
  /* Lock the space. */
  lock_lock(&s->lock);

  /* Is the buffer empty? */
  if (s->cells_new == NULL) {
    if (posix_memalign((void *)&s->cells_new, 64,
                       space_cellallocchunk * sizeof(struct cell)) != 0)
      error("Failed to allocate more cells.");
    bzero(s->cells_new, space_cellallocchunk * sizeof(struct cell));
    for (k = 0; k < space_cellallocchunk - 1; k++)
      s->cells_new[k].next = &s->cells_new[k + 1];
    s->cells_new[space_cellallocchunk - 1].next = NULL;
  }

  /* Pick off the next cell. */
  c = s->cells_new;
  s->cells_new = c->next;
  s->tot_cells += 1;
Pedro Gonnet's avatar
Pedro Gonnet committed
1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
  /* Unlock the space. */
  lock_unlock_blind(&s->lock);

  /* Init some things in the cell. */
  bzero(c, sizeof(struct cell));
  c->nodeID = -1;
  if (lock_init(&c->lock) != 0 || lock_init(&c->glock) != 0)
    error("Failed to initialize cell spinlocks.");

  return c;
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1075
1076
1077
1078

/**
 * @brief Split the space into cells given the array of particles.
 *
1079
 * @param s The #space to initialize.
Pedro Gonnet's avatar
Pedro Gonnet committed
1080
1081
1082
1083
 * @param dim Spatial dimensions of the domain.
 * @param parts Pointer to an array of #part.
 * @param N The number of parts in the space.
 * @param periodic flag whether the domain is periodic or not.
1084
 * @param h_max The maximal interaction radius.
Pedro Gonnet's avatar
Pedro Gonnet committed
1085
1086
 *
 * Makes a grid of edge length > r_max and fills the particles
1087
 * into the respective cells. Cells containing more than #space_splitsize
Pedro Gonnet's avatar
Pedro Gonnet committed
1088
1089
1090
1091
 * parts with a cutoff below half the cell width are then split
 * recursively.
 */

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
void space_init(struct space *s, double dim[3], struct part *parts, int N,
                int periodic, double h_max) {

  /* Store eveything in the space. */
  s->dim[0] = dim[0];
  s->dim[1] = dim[1];
  s->dim[2] = dim[2];
  s->periodic = periodic;
  s->nr_parts = N;
  s->size_parts = N;
  s->parts = parts;
  s->cell_min = h_max;
  s->nr_queues = 1;
  s->size_parts_foreign = 0;

  /* Check that all the particle positions are reasonable, wrap if periodic. */
  if (periodic) {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++) {
        while (parts[k].x[j] < 0) parts[k].x[j] += dim[j];
        while (parts[k].x[j] >= dim[j]) parts[k].x[j] -= dim[j];
1113
      }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
  } else {
    for (int k = 0; k < N; k++)
      for (int j = 0; j < 3; j++)
        if (parts[k].x[j] < 0 || parts[k].x[j] >= dim[j])
          error("Not all particles are within the specified domain.");
  }

  /* Allocate the xtra parts array. */
  if (posix_memalign((void *)&s->xparts, part_align,
                     N * sizeof(struct xpart)) != 0)
    error("Failed to allocate xparts.");
  bzero(s->xparts, N * sizeof(struct xpart));

  /* Initialize the velocities and internal energies. */
  for (int k = 0; k < N; k++) {
    struct part *p = &parts[k];
    struct xpart *xp = &s->xparts[k];
    xp->v_hdt[0] = p->v[0];
    xp->v_hdt[1] = p->v[1];
    xp->v_hdt[2] = p->v[2];
    xp->u_hdt = p->u;
  }

  /* For now, clone the parts to make gparts. */
  if (posix_memalign((void *)&s->gparts, part_align,
                     N * sizeof(struct gpart)) != 0)
    error("Failed to allocate gparts.");
  bzero(s->gparts, N * sizeof(struct gpart));
  /* for ( int k = 0 ; k < N ; k++ ) {
      s->gparts[k].x[0] = s->parts[k].x[0];
      s->gparts[k].x[1] = s->parts[k].x[1];
      s->gparts[k].x[2] = s->parts[k].x[2];
      s->gparts[k].v[0] = s->parts[k].v[0];
      s->gparts[k].v[1] = s->parts[k].v[1];
      s->gparts[k].v[2] = s->parts[k].v[2];
      s->gparts[k].mass = s->parts[k].mass;
      s->gparts[k].dt = s->parts[k].dt;
      s->gparts[k].id = s->parts[k].id;
      s->gparts[k].part = &s->parts[k];
      s->parts[k].gpart = &s->gparts[k];
1154
      }
1155
1156
1157
1158
1159
1160
  s->nr_gparts = s->nr_parts; */
  s->nr_gparts = 0;
  s->size_gparts = s->size_parts;

  /* Init the space lock. */
  if (lock_init(&s->lock) != 0) error("Failed to create space spin-lock.");
Pedro Gonnet's avatar
Pedro Gonnet committed
1161

1162
1163
1164
  /* Build the cells and the tasks. */
  space_regrid(s, h_max);
}