space.c 38.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
Pedro Gonnet's avatar
Pedro Gonnet committed
19
20
21
22
23
24
25
26

/* Config parameters. */
#include "../config.h"

/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <math.h>
27
#include <string.h>
28
#include <stdlib.h>
Pedro Gonnet's avatar
Pedro Gonnet committed
29

30
31
/* MPI headers. */
#ifdef WITH_MPI
32
#include <mpi.h>
33
34
#endif

35
36
37
/* This object's header. */
#include "space.h"

Pedro Gonnet's avatar
Pedro Gonnet committed
38
/* Local headers. */
39
#include "atomic.h"
40
#include "engine.h"
41
#include "error.h"
42
43
#include "kernel.h"
#include "lock.h"
44
#include "minmax.h"
45
#include "runner.h"
Pedro Gonnet's avatar
Pedro Gonnet committed
46

47
48
49
/* Shared sort structure. */
struct parallel_sort space_sort_struct;

Pedro Gonnet's avatar
Pedro Gonnet committed
50
51
/* Split size. */
int space_splitsize = space_splitsize_default;
52
int space_subsize = space_subsize_default;
53
int space_maxsize = space_maxsize_default;
Pedro Gonnet's avatar
Pedro Gonnet committed
54
55
56

/* Map shift vector to sortlist. */
const int sortlistID[27] = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    /* ( -1 , -1 , -1 ) */ 0,
    /* ( -1 , -1 ,  0 ) */ 1,
    /* ( -1 , -1 ,  1 ) */ 2,
    /* ( -1 ,  0 , -1 ) */ 3,
    /* ( -1 ,  0 ,  0 ) */ 4,
    /* ( -1 ,  0 ,  1 ) */ 5,
    /* ( -1 ,  1 , -1 ) */ 6,
    /* ( -1 ,  1 ,  0 ) */ 7,
    /* ( -1 ,  1 ,  1 ) */ 8,
    /* (  0 , -1 , -1 ) */ 9,
    /* (  0 , -1 ,  0 ) */ 10,
    /* (  0 , -1 ,  1 ) */ 11,
    /* (  0 ,  0 , -1 ) */ 12,
    /* (  0 ,  0 ,  0 ) */ 0,
    /* (  0 ,  0 ,  1 ) */ 12,
    /* (  0 ,  1 , -1 ) */ 11,
    /* (  0 ,  1 ,  0 ) */ 10,
    /* (  0 ,  1 ,  1 ) */ 9,
    /* (  1 , -1 , -1 ) */ 8,
    /* (  1 , -1 ,  0 ) */ 7,
    /* (  1 , -1 ,  1 ) */ 6,
    /* (  1 ,  0 , -1 ) */ 5,
    /* (  1 ,  0 ,  0 ) */ 4,
    /* (  1 ,  0 ,  1 ) */ 3,
    /* (  1 ,  1 , -1 ) */ 2,
    /* (  1 ,  1 ,  0 ) */ 1,
    /* (  1 ,  1 ,  1 ) */ 0};

85
86
87
88
89
90
91
92
93
94
95
96
/**
 * @brief Get the shift-id of the given pair of cells, swapping them
 *      if need be.
 *
 * @param s The space
 * @param ci Pointer to first #cell.
 * @param cj Pointer second #cell.
 * @param shift Vector from ci to cj.
 *
 * @return The shift ID and set shift, may or may not swap ci and cj.
 */

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int space_getsid(struct space *s, struct cell **ci, struct cell **cj,
                 double *shift) {

  int k, sid = 0, periodic = s->periodic;
  struct cell *temp;
  double dx[3];

  /* Get the relative distance between the pairs, wrapping. */
  for (k = 0; k < 3; k++) {
    dx[k] = (*cj)->loc[k] - (*ci)->loc[k];
    if (periodic && dx[k] < -s->dim[k] / 2)
      shift[k] = s->dim[k];
    else if (periodic && dx[k] > s->dim[k] / 2)
      shift[k] = -s->dim[k];
    else
      shift[k] = 0.0;
    dx[k] += shift[k];
  }

  /* Get the sorting index. */
  for (k = 0; k < 3; k++)
    sid = 3 * sid + ((dx[k] < 0.0) ? 0 : ((dx[k] > 0.0) ? 2 : 1));

  /* Switch the cells around? */
  if (runner_flip[sid]) {
    temp = *ci;
    *ci = *cj;
    *cj = temp;
    for (k = 0; k < 3; k++) shift[k] = -shift[k];
  }
  sid = sortlistID[sid];

  /* Return the sort ID. */
  return sid;
}
132

133
/**
134
 * @brief Recursively dismantle a cell tree.
135
136
 *
 */
137
138
139
140
141
142
143
144
145
146
147
148
149
150

void space_rebuild_recycle(struct space *s, struct cell *c) {

  int k;

  if (c->split)
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) {
        space_rebuild_recycle(s, c->progeny[k]);
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      }
}

151
/**
152
 * @brief Re-build the cell grid.
153
 *
154
155
 * @param s The #space.
 * @param cell_max Maximum cell edge length.
156
 * @param verbose Print messages to stdout or not.
157
 */
158

159
void space_regrid(struct space *s, double cell_max, int verbose) {
160
161
162
163

  float h_max = s->cell_min / kernel_gamma / space_stretch, dmin;
  int i, j, k, cdim[3], nr_parts = s->nr_parts;
  struct cell *restrict c;
164
  ticks tic = getticks();
165
166
167
168
169
170

  /* Run through the parts and get the current h_max. */
  // tic = getticks();
  if (s->cells != NULL) {
    for (k = 0; k < s->nr_cells; k++) {
      if (s->cells[k].h_max > h_max) h_max = s->cells[k].h_max;
171
    }
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  } else {
    for (k = 0; k < nr_parts; k++) {
      if (s->parts[k].h > h_max) h_max = s->parts[k].h;
    }
    s->h_max = h_max;
  }

/* If we are running in parallel, make sure everybody agrees on
   how large the largest cell should be. */
#ifdef WITH_MPI
  {
    float buff;
    if (MPI_Allreduce(&h_max, &buff, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD) !=
        MPI_SUCCESS)
186
      error("Failed to aggregate the rebuild flag across nodes.");
187
188
189
    h_max = buff;
  }
#endif
190
  if (verbose) message("h_max is %.3e (cell_max=%.3e).", h_max, cell_max);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  /* Get the new putative cell dimensions. */
  for (k = 0; k < 3; k++)
    cdim[k] =
        floor(s->dim[k] / fmax(h_max * kernel_gamma * space_stretch, cell_max));

  /* Check if we have enough cells for periodicity. */
  if (s->periodic && (cdim[0] < 3 || cdim[1] < 3 || cdim[2] < 3))
    error(
        "Must have at least 3 cells in each spatial dimension when periodicity "
        "is switched on.");

/* In MPI-Land, we're not allowed to change the top-level cell size. */
#ifdef WITH_MPI
  if (cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] || cdim[2] < s->cdim[2])
    error("Root-level change of cell size not allowed.");
#endif

  /* Do we need to re-build the upper-level cells? */
  // tic = getticks();
  if (s->cells == NULL || cdim[0] < s->cdim[0] || cdim[1] < s->cdim[1] ||
      cdim[2] < s->cdim[2]) {

    /* Free the old cells, if they were allocated. */
    if (s->cells != NULL) {
      for (k = 0; k < s->nr_cells; k++) {
        space_rebuild_recycle(s, &s->cells[k]);
        if (s->cells[k].sort != NULL) free(s->cells[k].sort);
      }
      free(s->cells);
      s->maxdepth = 0;
    }

    /* Set the new cell dimensions only if smaller. */
    for (k = 0; k < 3; k++) {
      s->cdim[k] = cdim[k];
      s->h[k] = s->dim[k] / cdim[k];
      s->ih[k] = 1.0 / s->h[k];
    }
    dmin = fminf(s->h[0], fminf(s->h[1], s->h[2]));

    /* Allocate the highest level of cells. */
    s->tot_cells = s->nr_cells = cdim[0] * cdim[1] * cdim[2];
    if (posix_memalign((void *)&s->cells, 64,
                       s->nr_cells * sizeof(struct cell)) != 0)
      error("Failed to allocate cells.");
    bzero(s->cells, s->nr_cells * sizeof(struct cell));
    for (k = 0; k < s->nr_cells; k++)
      if (lock_init(&s->cells[k].lock) != 0) error("Failed to init spinlock.");

    /* Set the cell location and sizes. */
    for (i = 0; i < cdim[0]; i++)
      for (j = 0; j < cdim[1]; j++)
        for (k = 0; k < cdim[2]; k++) {
          c = &s->cells[cell_getid(cdim, i, j, k)];
          c->loc[0] = i * s->h[0];
          c->loc[1] = j * s->h[1];
          c->loc[2] = k * s->h[2];
          c->h[0] = s->h[0];
          c->h[1] = s->h[1];
          c->h[2] = s->h[2];
          c->dmin = dmin;
          c->depth = 0;
          c->count = 0;
          c->gcount = 0;
          c->super = c;
          lock_init(&c->lock);
Pedro Gonnet's avatar
Pedro Gonnet committed
258
        }
259
260

    /* Be verbose about the change. */
261
262
263
    if (verbose)
      message("set cell dimensions to [ %i %i %i ].", cdim[0], cdim[1],
              cdim[2]);
264
265
266
    fflush(stdout);

  } /* re-build upper-level cells? */
267
268
  // message( "rebuilding upper-level cells took %.3f %s." ,
  // clocks_from_ticks(double)(getticks() - tic), clocks_getunit());
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

  /* Otherwise, just clean up the cells. */
  else {

    /* Free the old cells, if they were allocated. */
    for (k = 0; k < s->nr_cells; k++) {
      space_rebuild_recycle(s, &s->cells[k]);
      s->cells[k].sorts = NULL;
      s->cells[k].nr_tasks = 0;
      s->cells[k].nr_density = 0;
      s->cells[k].nr_force = 0;
      s->cells[k].density = NULL;
      s->cells[k].force = NULL;
      s->cells[k].dx_max = 0.0f;
      s->cells[k].sorted = 0;
      s->cells[k].count = 0;
      s->cells[k].gcount = 0;
Matthieu Schaller's avatar
Matthieu Schaller committed
286
      s->cells[k].init = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
287
      s->cells[k].ghost = NULL;
Matthieu Schaller's avatar
Matthieu Schaller committed
288
289
      s->cells[k].drift = NULL;
      s->cells[k].kick = NULL;
290
      s->cells[k].super = &s->cells[k];
291
    }
292
293
    s->maxdepth = 0;
  }
294
295
296
297

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
298
}
299
300
301
302
303
304

/**
 * @brief Re-build the cells as well as the tasks.
 *
 * @param s The #space in which to update the cells.
 * @param cell_max Maximal cell size.
305
 * @param verbose Print messages to stdout or not
306
307
 *
 */
308

309
void space_rebuild(struct space *s, double cell_max, int verbose) {
310

311
  ticks tic = getticks();
312
313
314
315
316

  /* Be verbose about this. */
  // message( "re)building space..." ); fflush(stdout);

  /* Re-grid if necessary, or just re-set the cell data. */
317
  space_regrid(s, cell_max, verbose);
318

319
320
321
322
323
324
  int nr_parts = s->nr_parts;
  int nr_gparts = s->nr_gparts;
  struct cell *restrict cells = s->cells;

  double ih[3], dim[3];
  int cdim[3];
325
326
327
328
329
330
331
332
333
  ih[0] = s->ih[0];
  ih[1] = s->ih[1];
  ih[2] = s->ih[2];
  dim[0] = s->dim[0];
  dim[1] = s->dim[1];
  dim[2] = s->dim[2];
  cdim[0] = s->cdim[0];
  cdim[1] = s->cdim[1];
  cdim[2] = s->cdim[2];
334
335
336
337

  /* Run through the particles and get their cell index. */
  // tic = getticks();
  const size_t ind_size = s->size_parts;
338
339
  int *ind;
  if ((ind = (int *)malloc(sizeof(int) * ind_size)) == NULL)
340
341
342
343
    error("Failed to allocate temporary particle indices.");
  for (int k = 0; k < nr_parts; k++) {
    struct part *restrict p = &s->parts[k];
    for (int j = 0; j < 3; j++)
344
345
346
347
      if (p->x[j] < 0.0)
        p->x[j] += dim[j];
      else if (p->x[j] >= dim[j])
        p->x[j] -= dim[j];
348
    ind[k] =
349
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
350
    cells[ind[k]].count++;
351
  }
Matthieu Schaller's avatar
Matthieu Schaller committed
352
353
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit()):
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  /* Run through the gravity particles and get their cell index. */
  // tic = getticks();
  const size_t gind_size = s->size_gparts;
  int *gind;
  if ((gind = (int *)malloc(sizeof(int) * gind_size)) == NULL)
    error("Failed to allocate temporary g-particle indices.");
  for (int k = 0; k < nr_gparts; k++) {
    struct gpart *gp = &s->gparts[k];
    for (int j = 0; j < 3; j++)
      if (gp->x[j] < 0.0)
        gp->x[j] += dim[j];
      else if (gp->x[j] >= dim[j])
        gp->x[j] -= dim[j];
    gind[k] =
        cell_getid(cdim, gp->x[0] * ih[0], gp->x[1] * ih[1], gp->x[2] * ih[2]);
    cells[gind[k]].gcount++;
  }
// message( "getting particle indices took %.3f %s." ,
// clocks_from_ticks(getticks() - tic), clocks_getunit());

375
376
#ifdef WITH_MPI
  /* Move non-local parts to the end of the list. */
377
  const int local_nodeID = s->e->nodeID;
378
  for (int k = 0; k < nr_parts; k++)
379
    if (cells[ind[k]].nodeID != local_nodeID) {
380
381
      cells[ind[k]].count -= 1;
      nr_parts -= 1;
382
383
384
      struct part tp = s->parts[k];
      s->parts[k] = s->parts[nr_parts];
      s->parts[nr_parts] = tp;
385
386
387
388
389
390
      if (s->parts[k].gpart != NULL) {
        s->parts[k].gpart->part = &s->parts[k];
      }
      if (s->parts[nr_parts].gpart != NULL) {
        s->parts[nr_parts].gpart->part = &s->parts[nr_parts];
      }
391
392
393
      struct xpart txp = s->xparts[k];
      s->xparts[k] = s->xparts[nr_parts];
      s->xparts[nr_parts] = txp;
394
395
396
      int t = ind[k];
      ind[k] = ind[nr_parts];
      ind[nr_parts] = t;
397
398
    }

399
400
401
402
403
404
405
406
  /* Move non-local gparts to the end of the list. */
  for (int k = 0; k < nr_gparts; k++)
    if (cells[ind[k]].nodeID != local_nodeID) {
      cells[ind[k]].gcount -= 1;
      nr_gparts -= 1;
      struct gpart tp = s->gparts[k];
      s->gparts[k] = s->gparts[nr_gparts];
      s->gparts[nr_gparts] = tp;
407
408
409
410
411
412
      if (s->gparts[k].id > 0) {
        s->gparts[k].part->gpart = &s->gparts[k];
      }
      if (s->gparts[nr_gparts].id > 0) {
        s->gparts[nr_gparts].part->gpart = &s->gparts[nr_gparts];
      }
413
414
415
416
417
      int t = ind[k];
      ind[k] = ind[nr_gparts];
      ind[nr_gparts] = t;
    }

418
419
  /* Exchange the strays, note that this potentially re-allocates
     the parts arrays. */
420
421
422
  /* TODO: This function also exchanges gparts, but this is shorted-out
     until they are fully implemented. */
  size_t nr_parts_exchanged = s->nr_parts - nr_parts;
423
424
425
426
427
428
429
  size_t nr_gparts_exchanged = s->nr_gparts - nr_gparts;
  engine_exchange_strays(s->e, nr_parts, &ind[nr_parts], &nr_parts_exchanged, nr_gparts,
                         &gind[nr_gparts], &nr_gparts_exchanged);
                         
  /* Add post-processing, i.e. re-linking/creating of gparts here. */
  
  /* Set the new particle counts. */     
430
  s->nr_parts = nr_parts + nr_parts_exchanged;
431
  s->nr_gparts = nr_gparts + nr_gparts_exchanged;
432
433

  /* Re-allocate the index array if needed.. */
434
  if (s->nr_parts > ind_size) {
435
436
    int *ind_new;
    if ((ind_new = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
437
      error("Failed to allocate temporary particle indices.");
438
    memcpy(ind_new, ind, sizeof(size_t) * nr_parts);
439
440
    free(ind);
    ind = ind_new;
441
442
443
  }

  /* Assign each particle to its cell. */
444
445
  for (int k = nr_parts; k < s->nr_parts; k++) {
    struct part *p = &s->parts[k];
446
    ind[k] =
447
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
448
449
450
451
    cells[ind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
452
  }
453
  nr_parts = s->nr_parts;
454
455
456
#endif

  /* Sort the parts according to their cells. */
457
  space_parts_sort(s, ind, nr_parts, 0, s->nr_cells - 1, verbose);
458
459

  /* Re-link the gparts. */
460
  for (int k = 0; k < nr_parts; k++)
461
    if (s->parts[k].gpart != NULL) s->parts[k].gpart->part = &s->parts[k];
462

463
  /* Verify space_sort_struct. */
464
  /* for ( k = 1 ; k < nr_parts ; k++ ) {
465
      if ( ind[k-1] > ind[k] ) {
466
467
          error( "Sort failed!" );
          }
468
      else if ( ind[k] != cell_getid( cdim , parts[k].x[0]*ih[0] ,
469
470
471
472
473
     parts[k].x[1]*ih[1] , parts[k].x[2]*ih[2] ) )
          error( "Incorrect indices!" );
      } */

  /* We no longer need the indices as of here. */
474
  free(ind);
475

476
477
478
479
#ifdef WITH_MPI

  /* Re-allocate the index array if needed.. */
  if (s->nr_gparts > gind_size) {
480
481
    int *gind_new;
    if ((gind_new = (int *)malloc(sizeof(int) * s->nr_gparts)) == NULL)
482
      error("Failed to allocate temporary g-particle indices.");
483
    memcpy(gind_new, gind, sizeof(int) * nr_gparts);
484
485
486
487
488
    free(gind);
    gind = gind_new;
  }

  /* Assign each particle to its cell. */
489
  for (int k = nr_gparts; k < s->nr_gparts; k++) {
490
491
492
493
494
495
496
497
498
    struct gpart *p = &s->gparts[k];
    gind[k] =
        cell_getid(cdim, p->x[0] * ih[0], p->x[1] * ih[1], p->x[2] * ih[2]);
    cells[gind[k]].count += 1;
    /* if ( cells[ ind[k] ].nodeID != nodeID )
        error( "Received part that does not belong to me (nodeID=%i)." , cells[
       ind[k] ].nodeID ); */
  }
  nr_gparts = s->nr_gparts;
499

500
#endif
501
502

  /* Sort the parts according to their cells. */
503
  space_gparts_sort(s->gparts, gind, nr_gparts, 0, s->nr_cells - 1);
504
505

  /* Re-link the parts. */
506
  for (int k = 0; k < nr_gparts; k++)
507
    if (s->gparts[k].id > 0) s->gparts[k].part->gpart = &s->gparts[k];
508
509

  /* We no longer need the indices as of here. */
510
  free(gind);
511
512
513

  /* Hook the cells up to the parts. */
  // tic = getticks();
514
515
516
  struct part *finger = s->parts;
  struct xpart *xfinger = s->xparts;
  struct gpart *gfinger = s->gparts;
517
518
  for (int k = 0; k < s->nr_cells; k++) {
    struct cell *restrict c = &cells[k];
519
520
521
522
523
524
525
    c->parts = finger;
    c->xparts = xfinger;
    c->gparts = gfinger;
    finger = &finger[c->count];
    xfinger = &xfinger[c->count];
    gfinger = &gfinger[c->gcount];
  }
526
  // message( "hooking up cells took %.3f %s." ,
Matthieu Schaller's avatar
Matthieu Schaller committed
527
  // clocks_from_ticks(getticks() - tic), clocks_getunit());
528
529
530

  /* At this point, we have the upper-level cells, old or new. Now make
     sure that the parts in each cell are ok. */
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
  space_split(s, cells, verbose);

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
}

/**
 * @brief Split particles between cells of a hierarchy
 *
 * @param s The #space.
 * @param cells The cell hierarchy
 * @param verbose Are we talkative ?
 */
void space_split(struct space *s, struct cell *cells, int verbose) {

  ticks tic = getticks();

  for (int k = 0; k < s->nr_cells; k++)
550
551
    scheduler_addtask(&s->e->sched, task_type_split_cell, task_subtype_none, k,
                      0, &cells[k], NULL, 0);
552
  engine_launch(s->e, s->e->nr_threads, 1 << task_type_split_cell, 0);
553

554
555
556
  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
557
}
558

559
/**
560
561
 * @brief Sort the particles and condensed particles according to the given
 *indices.
562
 *
Matthieu Schaller's avatar
Matthieu Schaller committed
563
 * @param s The #space.
564
565
566
567
 * @param ind The indices with respect to which the parts are sorted.
 * @param N The number of parts
 * @param min Lowest index.
 * @param max highest index.
568
 * @param verbose Are we talkative ?
569
 */
570

571
void space_parts_sort(struct space *s, int *ind, size_t N, int min, int max,
572
573
574
575
576
                      int verbose) {

  ticks tic = getticks();

  /*Populate the global parallel_sort structure with the input data */
577
578
579
  space_sort_struct.parts = s->parts;
  space_sort_struct.xparts = s->xparts;
  space_sort_struct.ind = ind;
580
  space_sort_struct.stack_size = 2 * (max - min + 1) + 10 + s->e->nr_threads;
581
582
583
584
585
586
  if ((space_sort_struct.stack = malloc(sizeof(struct qstack) *
                                        space_sort_struct.stack_size)) == NULL)
    error("Failed to allocate sorting stack.");
  for (int i = 0; i < space_sort_struct.stack_size; i++)
    space_sort_struct.stack[i].ready = 0;

587
  /* Add the first interval. */
588
589
590
591
592
593
594
595
596
  space_sort_struct.stack[0].i = 0;
  space_sort_struct.stack[0].j = N - 1;
  space_sort_struct.stack[0].min = min;
  space_sort_struct.stack[0].max = max;
  space_sort_struct.stack[0].ready = 1;
  space_sort_struct.first = 0;
  space_sort_struct.last = 1;
  space_sort_struct.waiting = 1;

597
  /* Launch the sorting tasks. */
598
  engine_launch(s->e, s->e->nr_threads, (1 << task_type_psort), 0);
599
600

  /* Verify space_sort_struct. */
601
  /* for (int i = 1; i < N; i++)
602
    if (ind[i - 1] > ind[i])
603
604
      error("Sorting failed (ind[%i]=%i,ind[%i]=%i), min=%i, max=%i.", i - 1,
  ind[i - 1], i,
605
606
            ind[i], min, max);
  message("Sorting succeeded."); */
607

608
  /* Clean up. */
609
  free(space_sort_struct.stack);
610
611
612
613

  if (verbose)
    message("took %.3f %s.", clocks_from_ticks(getticks() - tic),
            clocks_getunit());
614
}
615

616
void space_do_parts_sort() {
617

618
  /* Pointers to the sorting data. */
619
  int *ind = space_sort_struct.ind;
620
621
  struct part *parts = space_sort_struct.parts;
  struct xpart *xparts = space_sort_struct.xparts;
622

623
  /* Main loop. */
624
  while (space_sort_struct.waiting) {
625

626
    /* Grab an interval off the queue. */
627
628
    int qid =
        atomic_inc(&space_sort_struct.first) % space_sort_struct.stack_size;
629

630
    /* Wait for the entry to be ready, or for the sorting do be done. */
631
632
    while (!space_sort_struct.stack[qid].ready)
      if (!space_sort_struct.waiting) return;
633

634
    /* Get the stack entry. */
635
636
    ptrdiff_t i = space_sort_struct.stack[qid].i;
    ptrdiff_t j = space_sort_struct.stack[qid].j;
637
638
    int min = space_sort_struct.stack[qid].min;
    int max = space_sort_struct.stack[qid].max;
639
    space_sort_struct.stack[qid].ready = 0;
640

641
642
    /* Loop over sub-intervals. */
    while (1) {
643

644
      /* Bring beer. */
645
      const int pivot = (min + max) / 2;
646
647
      /* message("Working on interval [%i,%i] with min=%i, max=%i, pivot=%i.",
              i, j, min, max, pivot); */
648
649

      /* One pass of QuickSort's partitioning. */
650
651
      ptrdiff_t ii = i;
      ptrdiff_t jj = j;
652
653
654
655
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
656
          size_t temp_i = ind[ii];
657
658
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
659
          struct part temp_p = parts[ii];
660
661
          parts[ii] = parts[jj];
          parts[jj] = temp_p;
662
          struct xpart temp_xp = xparts[ii];
663
664
665
666
          xparts[ii] = xparts[jj];
          xparts[jj] = temp_xp;
        }
      }
667

668
      /* Verify space_sort_struct. */
669
670
671
672
673
674
675
676
677
678
679
680
      /* for (int k = i; k <= jj; k++)
        if (ind[k] > pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (<=pivot).");
        }
      for (int k = jj + 1; k <= j; k++)
        if (ind[k] <= pivot) {
          message("sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i.", k,
                  ind[k], pivot, i, j);
          error("Partition failed (>pivot).");
        } */
681
682
683
684
685
686

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
687
688
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
689
690
          while (space_sort_struct.stack[qid].ready)
            ;
691
692
693
694
695
696
697
          space_sort_struct.stack[qid].i = i;
          space_sort_struct.stack[qid].j = jj;
          space_sort_struct.stack[qid].min = min;
          space_sort_struct.stack[qid].max = pivot;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
698
          space_sort_struct.stack[qid].ready = 1;
699
        }
700

701
702
703
704
705
706
707
708
709
710
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;

      } else {

        /* Recurse on the right? */
711
        if (pivot + 1 < max) {
712
713
          qid = atomic_inc(&space_sort_struct.last) %
                space_sort_struct.stack_size;
714
715
          while (space_sort_struct.stack[qid].ready)
            ;
716
717
718
719
720
721
722
          space_sort_struct.stack[qid].i = jj + 1;
          space_sort_struct.stack[qid].j = j;
          space_sort_struct.stack[qid].min = pivot + 1;
          space_sort_struct.stack[qid].max = max;
          if (atomic_inc(&space_sort_struct.waiting) >=
              space_sort_struct.stack_size)
            error("Qstack overflow.");
723
          space_sort_struct.stack[qid].ready = 1;
724
        }
725

726
727
728
729
730
731
732
        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }
733

734
735
    } /* loop over sub-intervals. */

736
    atomic_dec(&space_sort_struct.waiting);
737
738

  } /* main loop. */
739
740
}

741
void space_gparts_sort(struct gpart *gparts, int *ind, size_t N, int min,
742
                       int max) {
743
744

  struct qstack {
745
746
    volatile size_t i, j;
    volatile int min, max;
747
748
749
750
751
752
753
    volatile int ready;
  };
  struct qstack *qstack;
  int qstack_size = 2 * (max - min) + 10;
  volatile unsigned int first, last, waiting;

  int pivot;
754
  ptrdiff_t i, ii, j, jj, temp_i;
755
  int qid;
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
  struct gpart temp_p;

  /* for ( int k = 0 ; k < N ; k++ )
      if ( ind[k] > max || ind[k] < min )
          error( "ind[%i]=%i is not in [%i,%i]." , k , ind[k] , min , max ); */

  /* Allocate the stack. */
  if ((qstack = malloc(sizeof(struct qstack) * qstack_size)) == NULL)
    error("Failed to allocate qstack.");

  /* Init the interval stack. */
  qstack[0].i = 0;
  qstack[0].j = N - 1;
  qstack[0].min = min;
  qstack[0].max = max;
  qstack[0].ready = 1;
  for (i = 1; i < qstack_size; i++) qstack[i].ready = 0;
  first = 0;
  last = 1;
  waiting = 1;

777
778
  /* Main loop. */
  while (waiting > 0) {
779

780
781
    /* Grab an interval off the queue. */
    qid = (first++) % qstack_size;
782

783
784
785
786
787
788
789
790
791
    /* Get the stack entry. */
    i = qstack[qid].i;
    j = qstack[qid].j;
    min = qstack[qid].min;
    max = qstack[qid].max;
    qstack[qid].ready = 0;

    /* Loop over sub-intervals. */
    while (1) {
792

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
      /* Bring beer. */
      pivot = (min + max) / 2;

      /* One pass of QuickSort's partitioning. */
      ii = i;
      jj = j;
      while (ii < jj) {
        while (ii <= j && ind[ii] <= pivot) ii++;
        while (jj >= i && ind[jj] > pivot) jj--;
        if (ii < jj) {
          temp_i = ind[ii];
          ind[ii] = ind[jj];
          ind[jj] = temp_i;
          temp_p = gparts[ii];
          gparts[ii] = gparts[jj];
          gparts[jj] = temp_p;
        }
      }
811

812
      /* Verify space_sort_struct. */
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
      /* for ( int k = i ; k <= jj ; k++ )
         if ( ind[k] > pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (<=pivot)." );
         }
         for ( int k = jj+1 ; k <= j ; k++ )
         if ( ind[k] <= pivot ) {
         message( "sorting failed at k=%i, ind[k]=%i, pivot=%i, i=%i, j=%i,
         N=%i." , k , ind[k] , pivot , i , j , N );
         error( "Partition failed (>pivot)." );
         } */

      /* Split-off largest interval. */
      if (jj - i > j - jj + 1) {

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          qid = (last++) % qstack_size;
          qstack[qid].i = i;
          qstack[qid].j = jj;
          qstack[qid].min = min;
          qstack[qid].max = pivot;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }
839

840
841
842
843
844
845
        /* Recurse on the right? */
        if (jj + 1 < j && pivot + 1 < max) {
          i = jj + 1;
          min = pivot + 1;
        } else
          break;
846

847
848
849
      } else {

        /* Recurse on the right? */
850
        if (pivot + 1 < max) {
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
          qid = (last++) % qstack_size;
          qstack[qid].i = jj + 1;
          qstack[qid].j = j;
          qstack[qid].min = pivot + 1;
          qstack[qid].max = max;
          qstack[qid].ready = 1;
          if ((waiting++) >= qstack_size) error("Qstack overflow.");
        }

        /* Recurse on the left? */
        if (jj > i && pivot > min) {
          j = jj;
          max = pivot;
        } else
          break;
      }

    } /* loop over sub-intervals. */

    waiting--;

  } /* main loop. */
873

874
  /* Verify space_sort_struct. */
875
876
877
878
879
880
881
882
  /* for ( i = 1 ; i < N ; i++ )
      if ( ind[i-1] > ind[i] )
          error( "Sorting failed (ind[%i]=%i,ind[%i]=%i)." , i-1 , ind[i-1] , i
     , ind[i] ); */

  /* Clean up. */
  free(qstack);
}
883

Pedro Gonnet's avatar
Pedro Gonnet committed
884
/**
885
 * @brief Mapping function to free the sorted indices buffers.
Pedro Gonnet's avatar
Pedro Gonnet committed
886
887
 */

888
void space_map_clearsort(struct cell *c, void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
889

890
891
892
893
894
  if (c->sort != NULL) {
    free(c->sort);
    c->sort = NULL;
  }
}
Pedro Gonnet's avatar
Pedro Gonnet committed
895

896
897
898
/**
 * @brief Map a function to all particles in a cell recursively.
 *
899
 * @param c The #cell we are working in.
900
901
902
903
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */

Pedro Gonnet's avatar
Pedro Gonnet committed
904
905
906
907
static void rec_map_parts(struct cell *c,
                          void (*fun)(struct part *p, struct cell *c,
                                      void *data),
                          void *data) {
908
909
910
911
912
913

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
914

915
916
917
918
919
920
  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts(c->progeny[k], fun, data);
}

Pedro Gonnet's avatar
Pedro Gonnet committed
921
/**
922
 * @brief Map a function to all particles in a space.
Pedro Gonnet's avatar
Pedro Gonnet committed
923
924
 *
 * @param s The #space we are working in.
925
926
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
927
928
 */

929
930
931
void space_map_parts(struct space *s,
                     void (*fun)(struct part *p, struct cell *c, void *data),
                     void *data) {
Pedro Gonnet's avatar
Pedro Gonnet committed
932

933
934
  int cid = 0;

935
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
936
937
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts(&s->cells[cid], fun, data);
938
}
939

940
941
942
943
944
945
946
947
/**
 * @brief Map a function to all particles in a cell recursively.
 *
 * @param c The #cell we are working in.
 * @param fun Function pointer to apply on the cells.
 */

static void rec_map_parts_xparts(struct cell *c,
948
949
                                 void (*fun)(struct part *p, struct xpart *xp,
                                             struct cell *c)) {
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

  int k;

  /* No progeny? */
  if (!c->split)
    for (k = 0; k < c->count; k++) fun(&c->parts[k], &c->xparts[k], c);

  /* Otherwise, recurse. */
  else
    for (k = 0; k < 8; k++)
      if (c->progeny[k] != NULL) rec_map_parts_xparts(c->progeny[k], fun);
}

/**
 * @brief Map a function to all particles (#part and #xpart) in a space.
 *
 * @param s The #space we are working in.
 * @param fun Function pointer to apply on the particles in the cells.
 */

void space_map_parts_xparts(struct space *s,
971
972
                            void (*fun)(struct part *p, struct xpart *xp,
                                        struct cell *c)) {
973
974
975
976
977
978
979
980

  int cid = 0;

  /* Call the recursive function on all higher-level cells. */
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_parts_xparts(&s->cells[cid], fun);
}

981
982
983
/**
 * @brief Map a function to all particles in a cell recursively.
 *
984
 * @param c The #cell we are working in.
985
986
987
988
 * @param full Map to all cells, including cells with sub-cells.
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
 */
989

Pedro Gonnet's avatar
Pedro Gonnet committed
990
991
992
static void rec_map_cells_post(struct cell *c, int full,
                               void (*fun)(struct cell *c, void *data),
                               void *data) {
993

994
995
996
997
998
  int k;

  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
999
1000
1001
      if (c->progeny[k] != NULL)
        rec_map_cells_post(c->progeny[k], full, fun, data);

1002
1003
  /* No progeny? */
  if (full || !c->split) fun(c, data);
1004
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1005
1006

/**
1007
 * @brief Map a function to all particles in a aspace.
Pedro Gonnet's avatar
Pedro Gonnet committed
1008
1009
 *
 * @param s The #space we are working in.
1010
 * @param full Map to all cells, including cells with sub-cells.
1011
1012
 * @param fun Function pointer to apply on the cells.
 * @param data Data passed to the function fun.
Pedro Gonnet's avatar
Pedro Gonnet committed
1013
 */
1014

1015
void space_map_cells_post(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1016
                          void (*fun)(struct cell *c, void *data), void *data) {
1017

1018
  int cid = 0;
1019

1020
  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1021
1022
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_post(&s->cells[cid], full, fun, data);
1023
}
1024

Pedro Gonnet's avatar
Pedro Gonnet committed
1025
1026
1027
static void rec_map_cells_pre(struct cell *c, int full,
                              void (*fun)(struct cell *c, void *data),
                              void *data) {
1028

1029
  int k;
Pedro Gonnet's avatar
Pedro Gonnet committed
1030

1031
1032
  /* No progeny? */
  if (full || !c->split) fun(c, data);
Pedro Gonnet's avatar
Pedro Gonnet committed
1033

1034
1035
1036
  /* Recurse. */
  if (c->split)
    for (k = 0; k < 8; k++)
Pedro Gonnet's avatar
Pedro Gonnet committed
1037
1038
      if (c->progeny[k] != NULL)
        rec_map_cells_pre(c->progeny[k], full, fun, data);
1039
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1040

1041
1042
1043
1044
1045
1046
1047
1048
/**
 * @brief Calls function fun on the cells in the space s
 *
 * @param s The #space
 * @param full If true calls the function on all cells and not just on leaves
 * @param fun The function to call.
 * @param data Additional data passed to fun() when called
 */
1049
void space_map_cells_pre(struct space *s, int full,
Pedro Gonnet's avatar
Pedro Gonnet committed
1050
                         void (*fun)(struct cell *c, void *data), void *data) {
1051

1052
  int cid = 0;
1053
1054

  /* Call the recursive function on all higher-level cells. */
Pedro Gonnet's avatar
Pedro Gonnet committed
1055
1056
  for (cid = 0; cid < s->nr_cells; cid++)
    rec_map_cells_pre(&s->cells[cid], full, fun, data);
1057
}
Pedro Gonnet's avatar
Pedro Gonnet committed
1058
1059
1060
1061
1062
1063
1064

/**
 * @brief Split cells that contain too many particles.
 *
 * @param s The #space we are working in.
 * @param c The #cell under consideration.
 */
1065

1066
void space_do_split(struct space *s, struct cell *c) {
1067

1068
1069
1070
  const int count = c->count;
  const int gcount = c->gcount;
  int maxdepth = 0;
1071
1072
  float h_max = 0.0f;
  int ti_end_min = max_nr_timesteps, ti_end_max = 0;
1073
  struct cell *temp;
1074
1075
  struct part *parts = c->parts;
  struct gpart *gparts = c->gparts;
1076
  struct xpart *xparts = c->xparts;
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

  /* Check the depth. */
  if (c->depth > s->maxdepth) s->maxdepth = c->depth;

  /* Split or let it be? */
  if (count > space_splitsize || gcount > space_splitsize) {

    /* No longer just a leaf. */
    c->split = 1;

    /* Create the cell's progeny. */
1088
    for (int k = 0; k < 8; k++) {
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
      temp = space_getcell(s);
      temp->count = 0;
      temp->gcount = 0;
      temp->loc[0] = c->loc[0];
      temp->loc[1] = c->loc[1];
      temp->loc[2] = c->loc[2];
      temp->h[0] = c->h[0] / 2;
      temp->h[1] = c->h[1] / 2;
      temp->h[2] = c->h[2] / 2;
      temp->dmin = c->dmin / 2;
      if (k & 4) temp->loc[0] += temp->h[0];
      if (k & 2) temp->loc[1] += temp->h[1];
      if (k & 1) temp->loc[2] += temp->h[2];
      temp->depth = c->depth + 1;
      temp->split = 0;
      temp->h_max = 0.0;
      temp->dx_max = 0.0;
      temp->nodeID = c->nodeID;
      temp->parent = c;
      c->progeny[k] = temp;
    }

    /* Split the cell data. */
    cell_split(c);

    /* Remove any progeny with zero parts. */
1115
    for (int k = 0; k < 8; k++)
1116
1117
1118
1119
      if (c->progeny[k]->count == 0 && c->progeny[k]->gcount == 0) {
        space_recycle(s, c->progeny[k]);
        c->progeny[k] = NULL;
      } else {
1120
        space_do_split(s, c->progeny[k]);
1121
        h_max = fmaxf(h_max, c->progeny[k]->h_max);
1122
1123
        ti_end_min = min(ti_end_min, c->progeny[k]->ti_end_min);
        ti_end_max = max(ti_end_max, c->progeny[k]->ti_end_max);
1124
1125
1126
1127
1128
1129
        if (c->progeny[k]->maxdepth > maxdepth)
          maxdepth = c->progeny[k]->maxdepth;
      }

    /* Set the values for this cell. */
    c->h_max = h_max;
1130
1131
    c->ti_end_min = ti_end_min;
    c->ti_end_max = ti_end_max;
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    c->maxdepth = maxdepth;

  }

  /* Otherwise, collect the data for this cell. */
  else {

    /* Clear the progeny. */
    bzero(c->progeny, sizeof(struct cell *) * 8);
    c->split = 0;
    c->maxdepth = c->depth;

    /* Get dt_min/dt_max. */
1145
    for (int k = 0; k < count; k++) {
1146
      struct part *p = &parts[k];
1147
      struct xpart *xp = &xparts[k];
1148
1149
      const float h = p->h;
      const int ti_end = p->ti_end;
1150
1151
1152
1153
      xp->x_old[0] = p->x[0];
      xp->x_old[1] = p->x[1];
      xp->x_old[2] = p->x[2];
      if (h > h_max) h_max = h;
1154
1155
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
1156
    }
1157
1158
1159
1160
1161
1162
    for (int k = 0; k < gcount; k++) {
      struct gpart *p = &gparts[k];
      const int ti_end = p->ti_end;
      if (ti_end < ti_end_min) ti_end_min = ti_end;
      if (ti_end > ti_end_max) ti_end_max = ti_end;
    }