SWIFT: Scheduling tasks efficiently on 256
cores - The KNL challenge

Matthieu Schaller, Pedro Gonnet, Aidan B. G. Chalk, James S. Willis,
Peter W. Draper & SWIFT team

Durham University, UK

IPCC-EMEA fall meeting 2016 -- Toulouse, France -- 26 October 2016

This work is a collaboration between two departments at Durham University (UK):

e The Institute for Computational Cosmology,
e The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent (Belgium),

St-Andrews (UK), Lausanne (Switzerland), Perth (Australia), Paris (France) and the
DiRAC software team.

This research is funded by an Intel IPCC since March 2015.

SPH scheme: The problem to solve

e For a set of N (>10°) particles, we want to
exchange hydrodynamical forces between all
neighbouring particles within a given (time
and space variable) search radius.

e Very similar to molecular dynamics but
requires two loops over the neighbours.

e Challenges:
o Particles are unstructured in space, large
density variations.
o Particles will move and the neighbour list of
each particle evolves over time.

o Interaction between two particles is

computationally cheap (low flop/byte).

SPH scheme: Single-node parallelization

)

e Neighbour search is performed via the use of
an adaptive grid constructed recursively

until we get ~500 particles per cell.

e Cell spatial size matches search radius.

O

e Particles interact only with partners in their
own cell or one of the 26 neighbouring cells.

e Amount of “work” per cell varies but order Sl
in which cells or pairs of cells is irrelevant.
— Perfect for task-based parallelism.

o

i i 000 Enaa

1
1
I
1
1
1
A
I
I
I
|
1
I
1
-
I
1

— Two tasks acting on the same cell conflict.
— The tasks of the second loop depend on
the tasks of the first loop.

@

Task based parallelism

e Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly
parallelizable way that automatically avoids most of the problems associated with concurrency and
load-balancing.

e We first reduce the problem to a
set of inter-dependent tasks.

e For each task, we need to know:
o Which tasks it depends on,
o Which tasks it conflicts with.

e Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

e We use our own Open-source library QuickSched (arxiv:1601.05384)

http://arxiv.org/abs/1601.05384

SPH scheme: Single node parallel performance

L1
I

LT I
lHI : m W | |

e |
1] m N
[T B i
| W1 01 [m_ i
\ i m N
P e

i_n 1 |]
(I I | HH |

| |
@ _m_m
|
|

I
I 0 m
| .
L
|

[[
il m i1
g m 1 N I | I |
| [B
I
| I |

I o
[IIl

|
|
| N |

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

SWIFT tasks

Il | |
II’IIIII"lIIIIIII L] ill

| nmwi | L
I i N 1 I I Nl
[1 IlIIIIlllillIIllliI
I | | Ifllilllllll[l U AL
I [I I I N e
I D N .

[N BN B B B B
| i L I | (| L |

|
| | e -
O I N e N e i
I s | N W N e | I
i i e |
I =) [.
| D U B B BN [[
W W W m Rmgney | W I {1
i wvm I
IR [l

I
it "R 18 B_I 1 1 ®m_ 11
[/ | 117} |] B || W I N e
UL AT N | DN | My 0 (g o B om |
LI T | I I | I 1 b 1 | B 0 _
I B W fiiil [0 | L W e
I
il I

- . | O s LN
11 L1 i | I
ULV T 17 g § n | H m i n (IR N
[INE T W m 1 § N DmEgN R e
(- | D e B B B LA T4
110 1 . . il [

1] W]
(-
1] Il
JRLTILT

time (ms)

Project Navigator

i}

<no current project>

B Bl b 8 @F O wiome

Ba otspo 0

H vtunej((75kipu(v1unsj((75...
F ge po

& Bottom-up

CPU Time~

Function / Call Stack N — Module Function (Full} Source File Start Address
Didle @Poor [Jok @ideal @ Over \T"" iTim

-Prunnerfdupairzjurce i "1125:5755 I D Us" ns‘ .swift “runneridnpairzjur(e "runneridnia(l‘h m(lx432f70 N
b runner_dopair_subset_density 773.140s [0s Os swift runner_dopair_subset_d... runner_doiact.h 0x431d70
b cell_split 732.337; [t 0s Os swift cell_split cell.c 0x436df0
» runner_do_sort_ascending 697.235s [0s Os swift runner_do_sort_ascendi... runner.c 0x435bd3
b runner_dopairl_density 612.415s || 0s Os swift runner_dopairl_density runner_doiact.h 0x432740
b runner_doself subset_density 606.718s | 0s Os swift runner_doself subset_d... runner_doiact.h 0x431a70
» runner_do_sort 443.475s DN 0s Os swift runner_do_sort runner.c 0x434cb0
P runner_doself1_density 387.061s [N 0s Os swift runner_doselfl_density runner_doiact.h 0x423f80
brunner_iact_nonsym_density 386.952s | 0s Os swift runner_iact_nonsym_de... hydro_iact.h 0x431a95
¥ kernel_deval 352.773s | 0s Os swift kernel_deval kernel_hydro.h 0x431a95
»runner_doself2_force 304.774s || 0s Os swift runner_doself2_force runner_doiact.h 0x426110
b runner_iact_force 243.479s [0s Os swift runner_iact_force hydro_iact.h 0x4265fd
b__libm_cbrtf e7 182.653s [l 0s Os swift _ libm_cbrtf_e7 0x457€90
b runner_iact_nonsym_density 163.101s [l 0s Os swift runner_iact_nonsym_de... hydro_iact.h 0x4322¢0
b runner_iact_nonsym_density 161.421s [0s Os swift runner_iact_nonsym_de... hydro_iact.h 0x431769
H Pspace_parts_sort_mapper 159‘7005- 0s Os swift space_parts_sort_mapper space.c 0x4071f0
y runner_iact_density 154.104s [l 0s Os swift runner_iact_density hydro_iact.h 0x42436e
b runner_iact_force 150.778s jll 0s Os swift runner_iact_force hydro_iact.h 0x433926
Pengine_marktasks_mapper 146.0555[. 05 0s swift engine_marktasks_map... engine.c 0x43a430
b kernel_deval 134‘5555- 0s Os swift kernel_deval kernel_hydro.h 0x43242¢
bkernel_deval 132.710s [l 0s Os swift kernel_deval kernel_hydro.h 0x4320b6
b scheduler_rewait_mapper 119.060s [Tl 0s Os swift scheduler_rewait_mapper scheduler.c 0x443e20
Prunner_dosub_subset_density 118 3915. 05 0s swift runner_dosub_subset_d... runner_doiact.h 0x42e020
Prunner_iact_nonsym_density 114‘4475- 0s Os swift runner_iact_nonsym_de... hydro_iact.h 0x432c85
b runner_iact_nonsym_density 112.263s [l 0s Os swift runner_iact_nonsym_de... hydro_iact.h 0x432944
b cell_locktree 107.129s [l 0s Os swift cell_locktree cell.c 0x4369b0
P engine_marktasks_sorts_mapper 100.9665 |] 05 05 swift engine_marktasks_sort... engine.c 0x43a3a0
bkernel_deval 95‘4225. 0s Os swift kernel_deval kernel_hydro.h 0x432d2b
b kernel_deval 95.053s [l 0s Os swift kernel_deval kernel_hydro.h 0x42440a
b kernel_deval 93.144s [l 0s Os swift kernel_deval kernel_hydro.h 0x426614
bkernel_deval 92‘9255. 0s Os swift kernel_deval kernel_hydro.h 0x4329e2
brunner_do_drift 87.529s [l 0s Os swift runner_do_dri runner.c 0x417f70
b space_rebuild 83.858s [0s Os swift space_rebuild space.c 0x4059e0
pkernel_deval 68 5915. 0s 0s swift kernel_deval kernel_hydro.h 0x433935
Phydro get pressure 66.972s [l 0s Os swift hydro get pressure hydro.h 0x418459

Selected 1 row(s): 146.095s 0s Os
{ I | 0| K C
Y 0 Any Process [~ Any Thread - Any Module [~ [l Any Utilization - User functior v

Show inline f v

CPU Time |-
Viewing ¢ lofl | selected stack(s)

100.0% (146.095s of 146.005s)

swiftlengine_marktasks_mapper - engin...
swift!threadpool_runner+0x155 - threa..

Functions o v

Comparison to Gadget

Realistic problem (see James’ talk)
Same accuracy.

Same hardware.

Same compiler.

Same solution.

More than 17x speed-up vs. “industry
standard” Gadget code.

A
-
=]
=
2
)
=
i
gl
W
(=]
=]
i¥]
1
=
=

Note that vectorization is switched off here.

Challenges for KNL

m— jnit sub self/density ghost = self/force = sub pair/force
=== pair/density = sub_pair/density === pair/force = kick sub_self/force
= sglf/density

s i 2 Hil g s o |

a
o
o]
v
=
=

|:|||||I|||| mlllI : (] ' lIII ||”|||

[1I | L]
I ||||I| |III
|1

10000

Wall clock time [ms

Pathological case. Large non-tasked sections at the start of the time-step.

Challenges for KNL

Cosma-5: Sandy Bridge 16 cores at 2.6GHz

Messages:
e No good scaling on hyperthreads (all
architectures)

e KNL never faster than Sandy Bridge
e Need to improve scaling
performance

Note that vectorization is switched off here.

KNL in cache mode and quadrant mode.
Pinning left to the OS.

peem
A
=
=

| S
=
]
=
—
=
_
CI
[#a]
]
—_
0
=)

=

COSMA5
16 threads: 78% efficiency
32 threads: 48% efficiency

KNL
16 threads: 77% efficiency
32 threads: 64 % efficiency

10!
Threads

Another point of view

Time per step

2es

]
—
o]
L]

200

100

30

* 1core
* 12 cores

+ oo tooi) prooviERNTRR

T ‘.ln"..m

] ..-M

. l:"m

WM"

10 100

1000

led
Updated particles

le5

leg

Parallelize the rest - Threadpools

Non-parallel sections of the code

ifo

Domain decomposition

Some aspects of mesh construction

Marking tasks as active or inactive (loop over task list)
Scheduling the tasks (loop over task list)

Reduction of time-step (loop over cells)
In summary:

e Physics perfectly load balanced, scales well
e Bottlenecks down to “maintenance” that is run serially in between time steps

Quick and dirty solution: OpenMP

e Could use OpenMP for these simple loops.
e Asalways comes with some issues:

o No fine control over threads
o Hard to interface with the rest of the task-based system (pthread)

o QOverheads

Quick and dirty solution: OpenMP

e Could use OpenMP for these simple loops.
e Asalways comes with some issues:

o No fine control over threads
o Hard to interface with the rest of the task-based system (pthread)

o QOverheads

Threadpool: Main idea

e C(reate a set of additional (p)threads.
e Make the threads wait at a barrier.
e Create a “map” function to be called on a chunk of the arrays.

e When required unleash the the threads on chunks of the array, each calling the
map function.

Essentially a lightweight version of OpenMP

Threadpool: Example for user

void stats collect part mapper (void *map data, int nr parts, void
*extra data) {

struct part* particles = (struct part*) map data;

/* Loop over particles */
for (int k = 0; k < nr parts; k++) {

Stats.energy += particles[k].energy // for example
}

// Elsewhere...

threadpool map (threadpool, stats collect part mapper, s->parts,
s—->nr parts, sizeof (struct part), 10000);

Threadpool: Under the hood

while (1) {
/* Desired chunk size. */
size t chunk size =
(tp->map data size - tp->map data count) / (2 * tp->num threads);

/* Get a chunk and check its size. */

size t task ind = atomic add(&tp->map data count, chunk size);
if (task ind >= tp->map data size) break;

if (task ind + chunk size > tp->map data size)

chunk size = tp->map data size - task ind;

/* Call the mapper function. */
tp->map function((char *)tp->map data + (tp->map data stride *
task ind), chunk size, tp->map extra data);

Results

Back to the time per particles

* h_max=1
* master
* drift + skip

=
=]
=]
)

o
@O
]
o
P
[
=1
o
E
=

i R 4

B Lt 2

1000 led
Updated particles

TS

Showing KNL only here.

Better efficiency. Achieve good scaling up
to 32 cores. Still struggling to go to 64
cores.

Also improved performance on 1 core.
Lowered time to solution.

Regular Xeon also benefits from solution
(not shown here). Now 23x vs. Gadget
instead of 17x on 16 cores !

| o |
f
=
=

—_—
=
]

- -
A
=
—_
CI
[*a]
(]
—
Y
=
15

Master branch
16 threads: 77% efficiency
32 threads: 64 % efficiency

Threadpool branch
16 threads: 90% efficiency
32 threads: 84 % efficiency

10!
Threads

Future work

Some more improvements

Reduce the number of scalar sections (Amdahl’s law):

e Efficienti/o
e Fully parallel tree construction
e More parallel domain decomposition

Other implementation “details” :

e Make the threadpool a tiny bit smarter to reduce the need for magical constants

Open issues

Need better linux kernel ¢ From vTune analysis:

Function

runner dopair2 force

runner do sort ascending
runner dopairl density
runner dopair subset density
runner doself subset density
runner doselfl density
runner do_sort

runner doself2 force
runner iact force

runner iact nonsym density
space parts sort mapper

cell split

[...]

Linux 3.10.0-327.36.2.el7.x86_64

939.821s
799, 911s
787.111s

Conclusions

e KNL is hard (and not just because of AVX-512)
e Parallelisation of all parts of the code is necessary

e Using a very lightweight threadpool mechanism to parallelize simple section

helps.
e Gains also apply to Xeon

e s the current linux kernel up-to-date for KNL ?

