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SPH scheme: The problem to solve

e For a set of N (>10°) particles, we want to
exchange hydrodynamical forces between all
neighbouring particles within a given (time
and space variable) search radius.

e Very similar to molecular dynamics but
requires two loops over the neighbours.

e Challenges:
o  Particles are unstructured in space, large
density variations.
o Particles will move and the neighbour list of
each particle evolves over time.

o  Interaction between two particles is

computationally cheap (low flop/byte).



SPH scheme: Single-node parallelization

)

e Neighbour search is performed via the use of
an adaptive grid constructed recursively

until we get ~500 particles per cell.

e Cell spatial size matches search radius.

O

e Particles interact only with partners in their
own cell or one of the 26 neighbouring cells.

e Amount of “work” per cell varies but order Sl
in which cells or pairs of cells is irrelevant.
— Perfect for task-based parallelism.
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— Two tasks acting on the same cell conflict.
— The tasks of the second loop depend on
the tasks of the first loop.
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Task based parallelism

e Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly
parallelizable way that automatically avoids most of the problems associated with concurrency and
load-balancing.

e We first reduce the problem to a
set of inter-dependent tasks.

e For each task, we need to know:
o Which tasks it depends on,
o  Which tasks it conflicts with.

e Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

e We use our own Open-source library QuickSched (arxiv:1601.05384 )



http://arxiv.org/abs/1601.05384

SPH scheme: Single node parallel performance
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Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

SWIFT tasks
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Comparison to Gadget

Realistic problem (see James’ talk)
Same accuracy.

Same hardware.

Same compiler.

Same solution.

More than 17x speed-up vs. “industry
standard” Gadget code.
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Note that vectorization is switched off here.




Challenges for KNL

m— jnit sub self/density ghost = self/force = sub pair/force
=== pair/density = sub_pair/density === pair/force = kick sub_self/force
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Pathological case. Large non-tasked sections at the start of the time-step.



Challenges for KNL

Cosma-5: Sandy Bridge 16 cores at 2.6GHz

Messages:
e No good scaling on hyperthreads (all
architectures)

e KNL never faster than Sandy Bridge
e Need to improve scaling
performance

Note that vectorization is switched off here.

KNL in cache mode and quadrant mode.
Pinning left to the OS.
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COSMA5
16 threads: 78% efficiency
32 threads: 48% efficiency

KNL
16 threads: 77% efficiency
32 threads: 64 % efficiency
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Another point of view

Time per step
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Parallelize the rest - Threadpools



Non-parallel sections of the code

ifo

Domain decomposition

Some aspects of mesh construction

Marking tasks as active or inactive (loop over task list)
Scheduling the tasks (loop over task list)

Reduction of time-step (loop over cells)
In summary:

e Physics perfectly load balanced, scales well
e Bottlenecks down to “maintenance” that is run serially in between time steps



Quick and dirty solution: OpenMP

e Could use OpenMP for these simple loops.
e Asalways comes with some issues:

o No fine control over threads
o  Hard to interface with the rest of the task-based system (pthread)

o QOverheads
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Threadpool: Main idea

e C(reate a set of additional (p)threads.
e Make the threads wait at a barrier.
e Create a “map” function to be called on a chunk of the arrays.

e When required unleash the the threads on chunks of the array, each calling the
map function.

Essentially a lightweight version of OpenMP



Threadpool: Example for user

void stats collect part mapper (void *map data, int nr parts, void
*extra data) {

struct part* particles = (struct part*) map data;

/* Loop over particles */
for (int k = 0; k < nr parts; k++) {

Stats.energy += particles[k].energy // for example
}

// Elsewhere...

threadpool map (threadpool, stats collect part mapper, s->parts,
s—->nr parts, sizeof (struct part), 10000);




Threadpool: Under the hood

while (1) {
/* Desired chunk size. */
size t chunk size =
(tp->map data size - tp->map data count) / (2 * tp->num threads);

/* Get a chunk and check its size. */

size t task ind = atomic add(&tp->map data count, chunk size);
if (task ind >= tp->map data size) break;

if (task ind + chunk size > tp->map data size)

chunk size = tp->map data size - task ind;

/* Call the mapper function. */
tp->map function((char *)tp->map data + (tp->map data stride *
task ind), chunk size, tp->map extra data);




Results



Back to the time per particles
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* master
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Showing KNL only here.

Better efficiency. Achieve good scaling up
to 32 cores. Still struggling to go to 64
cores.

Also improved performance on 1 core.
Lowered time to solution.

Regular Xeon also benefits from solution
(not shown here). Now 23x vs. Gadget
instead of 17x on 16 cores !
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Master branch
16 threads: 77% efficiency
32 threads: 64 % efficiency

Threadpool branch
16 threads: 90% efficiency
32 threads: 84 % efficiency
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Future work



Some more improvements

Reduce the number of scalar sections (Amdahl’s law):

e Efficienti/o
e Fully parallel tree construction
e More parallel domain decomposition

Other implementation “details” :

e Make the threadpool a tiny bit smarter to reduce the need for magical constants



Open issues

Need better linux kernel ¢ From vTune analysis:

Function

runner dopair2 force

runner do sort ascending
runner dopairl density
runner dopair subset density
runner doself subset density
runner doselfl density
runner do_sort

runner doself2 force
runner iact force

runner iact nonsym density
space parts sort mapper

cell split

[...]

Linux 3.10.0-327.36.2.el7.x86_64

939.821s
799, 911s
787.111s



Conclusions

e KNL is hard (and not just because of AVX-512)
e Parallelisation of all parts of the code is necessary

e Using a very lightweight threadpool mechanism to parallelize simple section

helps.
e Gains also apply to Xeon

e s the current linux kernel up-to-date for KNL ?



