

Research Assistant

Institute for Computational Cosmology, Durham University, UK

November 2016

3

This work is a collaboration between 2 departments at Durham University (UK):

 The Institute for Computational Cosmology,

 The School of Engineering and Computing Sciences,

 with contributions from the astronomy group at the university of Ghent

(Belgium), St-Andrews (UK), Lausanne (Switzerland) and the DiRAC software

team.

This research is partly funded by an Intel IPCC since January 2015.

The problem to solve

4

5

What we do and how we do it

 Astronomy / Cosmology simulations of the

formation of the Universe and galaxy

evolution.

 EAGLE project1: 48 days of computing on

4096 cores. >500 TBytes of data products

(post-processed data is public!). Most cited

astronomy paper of 2015 (out of >26000).

 Simulations of gravity and hydrodynamic

forces with a spatial dynamic range spanning

6 orders of magnitude running for

>2M time-steps.

One simulated galaxy out of the

EAGLE virtual universe.

1) www.eaglesim.org

http://www.eaglesim.org/

6

7

What we do and how we do it

• Solve coupled equations of gravity and

hydrodynamics.

• Consider the interaction between gas and

stars/black holes as part of a large and

complex subgrid model.

• Evolve multiple matter species at the same

time.

• Large density imbalances develop over time:

→ Difficult to load-balance.

One simulated galaxy out of the

EAGLE virtual universe.

SPH scheme: The problem to solve

For a set of N (>109) particles, we want to exchange hydrodynamical forces

between all neighbouring particles within a given (time and space variable)

search radius.

Very similar to molecular dynamics but requires two loops over the

neighbours.

Challenges:

 Particles are unstructured in space, large density variations.

 Particles will move and the neighbour list of each particle evolves over

time.

 Interaction between two particles is computationally cheap

(low flop/byte ratio).

8

SPH scheme: The traditional method

The “industry standard” cosmological code

is GADGET (Springel et al.1999, Springel 2005).

 MPI-only code.

 Neighbour search based on oct-tree.

 Oct-tree implies “random” memory walks

– Lack of predictability.

– Nearly impossible to vectorize.

– Very hard to load-balance.

9

SPH scheme: The traditional method

10

for (int i=0; i<N; ++i) { // loop over all particles

 struct part *pi = &parts[i];

 list = tree_get_neighbours(pi->position, pi->search_radius); // get a list of ngbs

 for(int j=0; j < N_ngb; ++j) { // loop over ngbs

 const struct part *pj = &parts[list[j]];

 INTERACT(pi, pj);

} }

Need to make things regular and

predictable:

 Neighbour search is performed via the

use of an adaptive grid constructed

recursively until we get ~500 particles

per cell.

 Cell spatial size matches search radius.

 Particles interact only with partners in

their own cell or one of the 26

neighbouring cells

SPH scheme: The SWIFT way

11

Retain the large fluctuations in

density by splitting cells:

 If cells have ~400 particles they fit in the

L2 caches.

 Makes the problem very local and fine-

grained.

SPH scheme: The SWIFT way

12

SPH scheme: The SWIFT way

13

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells

 for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

 const int count_i = cells[ci].count;

 const int count_j = cells[cj].count;

 for(int i = 0; i < count_i; ++i) {

 for(int j = 0; j < count_j; ++j) {

 struct part *pi = &parts[i];

 struct part *pj = &parts[j];

 INTERACT(pi, pj); // symmetric interaction

} } } }

SPH scheme: The SWIFT way

14

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells

 for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

 const int count_i = cells[ci].count;

 const int count_j = cells[cj].count;

 for(int i = 0; i < count_i; ++i) {

 for(int j = 0; j < count_j; ++j) {

 struct part *pi = &parts[i];

 struct part *pj = &parts[j];

 INTERACT(pi, pj); // symmetric interaction

} } } }

Vectorization

Threads + MPI

Task-based parallelism

15

SPH scheme: Single-node parallelization

No need to process the cell pairs in

any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t

process pairs that use the same cell.

 -> Pairs could have vastly different

runtimes since they can have very

different particle numbers.

16

SPH scheme: Single-node parallelization

No need to process the cell pairs in

any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t

process pairs that use the same cell.

 -> Pairs could have vastly different

runtimes since they can have very

different particle numbers.

17

We need dynamic scheduling !

Task-base parallelism 101

Shared-memory parallel programming paradigm in which the computation is

formulated in an implicitly parallelizable way that automatically avoids most of

the problems associated with concurrency and load-balancing.

 We first reduce the problem to a

set of inter-dependent tasks.

 For each task, we need to know:

Which tasks it depends on,

Which tasks it conflicts with.

 Each thread then picks up a task which has

no unresolved dependencies or conflicts and computes it.

 We use our own (problem agnostic !) Open-source library QuickSched (arXiv:1601.05384)

18

http://arxiv.org/abs/1601.05384

Task-base parallelism for SPH

 For two cells, we have the task graph shown on the

right.

 Arrows depict dependencies, dashed lines show

conflict.

 Ghost tasks are used to link tasks and reduce

the number of dependencies.

19

SPH scheme: Single node parallel performance

20

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

 Realistic problem (video from start of the talk)

 Same accuracy.

 Same hardware.

 Same compiler (no vectorization here).

 Same solution.

More than 17x speed-up vs. “industry

standard” Gadget code.

Single node performance vs. Gadget

21

Asynchronous MPI communications

22

• A given rank will need the cells directly

adjacent to it to interact with its particles.

• Instead of sending all the “halo” cells at

once between the computation steps, we

send each cell individually using MPI

asynchronous communication primitives.

• Sending/receiving data is just another task

type, and can be executed in parallel with

the rest of the computation.

• Once the data has arrived, the scheduler

unlocks the tasks that needed the data.

• No global lock or barrier !

Asynchronous communications as tasks

Asynchronous communications as tasks

Communication tasks do not perform any computation:

 Call MPI_Isend() / MPI_Irecv() when enqueued.

 Dependencies are released when MPI_Test() says the data has been

sent/received.

Not all MPI implementations fully support the MPI v3.0 standard.

 Uncovered several bugs in different implementations providing
MPI_THREAD_MULTIPLE.

 e.g.: OpenMPI 1.x crashes when running on Infiniband!

Most experienced MPI users will advise against creating so many send/recv.

24

Asynchronous communications as tasks

 Message size is 5-10kB.

 On 32 ranks with 16M particles in 250’000

cells, we get ~58’000 point-to-point

messages per time-step!

 Relies on MPI_THREAD_MULTIPLE as all the

local threads can emit sends and receives.

 Spreads the load on the network over the

whole time-step.

→ More efficient use of the network!

→ Not limited by bandwidth.

25

Intel ITAC output from 2x36-cores Broadwell nodes. Every black line

is a communication between two threads (blue bands).

Asynchronous communications as tasks

 Message size is 5-10kB.

 On 32 ranks with 16M particles in 250’000

cells, we get ~58’000 point-to-point

messages per time-step!

 Relies on MPI_THREAD_MULTIPLE as all the

local threads can emit sends and receives.

 Spreads the load on the network over the

whole time-step.

→ More efficient use of the network!

→ Not limited by bandwidth.

26

Intel ITAC output from 2x36-cores Broadwell nodes. >10k

point-to-point communications are reported over this time-

step.

Domain decomposition

 For each task we compute the amount of work

(=runtime) required.

 We can build a graph in which the simulation data

are nodes and the tasks operation on the data are

hyperedges.

 The task graph is split to balance the work (not the

data!) using the METIS library.

 Tasks spanning the partition are computed on both

sides, and the data they use needs to be

sent/received between ranks.

 Send and receive tasks and their dependencies are

generated automatically.

27

Domain decomposition

Domain geometry can be complex.
 No regular grid pattern.

 No space-filling curve order.

 Good load-balancing by construction.

Domain shapes and computational costs

evolve over the course of the simulation.
 Periodically update the graph partitioning.

 May lead to large (unnecessary?) re-

shuffling of the data across the whole

machine.

28

Particles coloured by the domain they belong to for a

cosmological simulation.

The domains are un-structured.

Multiple node parallel performance

29

Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8 nodes of 12 cores.

Scaling results: DiRAC Data Centric facility Cosma-5

System: x86 architecture - 2 Intel Sandy Bridge-EP Xeon E5-2670 at 2.6 GHz with 128 GByte of RAM per

node.

30

Scaling results: SuperMUC (#22 in Top500)

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of RAM per

node.

31

Scaling results: JUQUEEN (#11 in Top500)

System: BlueGene Q - IBM PowerPC A2 processors running at 1.6 GHz with 16 GByte of RAM per node.

32

Scaling results

33

 Almost perfect strong-scaling performance on a

cluster of many-core nodes when increasing the

number of threads per node (fixed #MPI ranks).

 Clear benefit of task-based parallelism and

asynchronous communication.

 Future-proof! As the thread/core count per node

increases, so does the code performance.

 Why?

→ Because we don’t rely on MPI for intra-node

communications.

Explicit vectorization using intrinsics

34

Explicit vectorization of the core routines.

Example of a task interacting all particles

within one cell.

Thanks to our task-based parallel framework:

 No need to worry about MPI

 No need to worry about threading or race

conditions

 Full problem holds in L2 cache.

35

Brute-force

implementation

 Very simple to write

 Compilers can in principle

“auto-vectorize” the whole

problem.

36

Brute-force

implementation

 Very simple to write

 Compilers can in principle

“auto-vectorize” the whole

problem.

... But most pairs of particles will

not interact....

Need to manually implement

a better solution

 37

Explicit vectorization: strategy

• Use local particle cache

• Find particles that interact and store them in a secondary cache

• Calculate all interactions on a particle and store results in a set of
intermediate vectors

• Perform horizontal add on intermediate vectors and update the particle with
the result

• Process 2 vectors at a time when entering the interaction loop in order to
overlap independent instructions

• Pad caches to prevent remainders and mask out the result

Step 1: Form a local cache of particles

39

Step 2: Find pairs and pack them in a 2nd cache

40

Step 3: Process all pairs in the 2nd cache

41

Detailed vTune analysis showed

limitations due to bubble

forming in the pipeline and

loads blocked by store

forwarding.

Solution: Interleave operations

from 2 vectors.

Improvements: Process two vectors at a time

42

Vectorization results

CFLAGS Speed-up over naïve

brute force

Speed-up over best

serial version

-O3 -xAVX 2.93x 1.94x

-O3 -xCORE-AVX2 3.64x 2.74x

-O3 -xMIC-AVX512 4.37x 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for fairness

And take-away messages

44

More on SWIFT

Completely open-source software including all the examples and scripts.

~30’000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadget code on the same

setup and same architecture. Thanks to:
 Better algorithms

 Better parallelisation strategy

 Better domain decomposition strategy

Fully compatible with Gadget in terms of input and output files.

45

More on SWIFT

46

Gravity solved using a FMM and mesh for

periodic and long-range forces.

Gravity and hydrodynamics are solved at the

same time on the same particles as

different properties are updated. No need

for an explicit lock.

I/O done using the (parallel) HDF5 library,

currently working on a continuous

asynchronous approach.

Task-based parallelism allows for very simple

code within tasks.

→ Very easy to extend with new physics

without worrying about parallelism.

Conclusion and Outlook

Collaboration between Computer scientists and physicists works!

Successfully decomposed the parallelization in three separate problems.

Developed usable simulation software using state-of-the-art paradigms.

Great strong-scaling results up to >100’000 cores.

Future: Addition of more physics to the code.

Future: Parallelisation of i/o.

47

Matthieu Schaller

www.swiftsim.org

www.intel.com/hpcdevcon

