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This work is a collaboration between two departments at Durham University (UK):

● The Institute for Computational Cosmology,

● The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent (Belgium), 

St-Andrews (UK), Lausanne (Switzerland), Perth (Australia), Paris (France) and the 

DiRAC software team. 

This research is funded by an Intel IPCC since March 2015.



SPH scheme: The problem to solve
● For a set of N (>10

9

) particles, we want to 

exchange hydrodynamical forces between all 

neighbouring particles within a given (time 

and space variable) search radius.

● Very similar to molecular dynamics but 

requires two loops over the neighbours.

● Challenges:

○ Particles are unstructured in space, large 

density variations.

○ Particles will move and the neighbour list of 

each particle evolves over time.

○ Interaction between two particles is 

computationally cheap (low flop/byte). 
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SPH scheme: Single-node parallelization
● Neighbour search is performed via the use of 

an adaptive grid constructed recursively 

until we get ~500 particles per cell.

● Cell spatial size matches search radius.

● Particles interact only with partners in their 

own cell or one of the 26 neighbouring cells.

● Amount of “work” per cell varies but order 

in which cells or pairs of cells is irrelevant.

→ Perfect for task-based parallelism.

→ Two tasks acting on the same cell conflict.

→ The tasks of the second loop depend on 

the tasks of the first loop.
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Task based parallelism
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● Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly 

parallelizable way that automatically avoids most of the problems associated with concurrency and 

load-balancing.

● We first reduce the problem to a 

set of inter-dependent tasks.

● For each task, we need to know:

○ Which tasks it depends on,

○ Which tasks it conflicts with.

● Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

● We use our own Open-source library QuickSched (arXiv:1601.05384 )

http://arxiv.org/abs/1601.05384


SPH scheme: Single node parallel performance

6

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.



SPH scheme: Single node parallel performance
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16 cores Haswell 
node.

● Blue: 
16 cores

● Green:
5-15 cores

● Yellow:
3-4 cores

● Red:
1-2 cores



Comparison to Gadget
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● Realistic problem (see James’ talk)

● Same accuracy.

● Same hardware.

● Same compiler.

● Same solution.

More than 17x speed-up vs. “industry 

standard” Gadget code.

Note that vectorization is switched off here.



Challenges for KNL
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Pathological case. Large non-tasked sections at the start of the time-step.



Challenges for KNL
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Cosma-5: Sandy Bridge 16 cores at 2.6GHz

Messages:

●  No good scaling on hyperthreads (all 

architectures)

● KNL never faster than Sandy Bridge

● Need to improve scaling 

performance

Note that vectorization is switched off here.

KNL in cache mode and quadrant mode. 

Pinning left to the OS.

COSMA5
16 threads: 78% efficiency
32 threads: 48% efficiency  

KNL
16 threads: 77% efficiency
32 threads: 64% efficiency



Another point of view



Parallelize the rest - Threadpools



Non-parallel sections of the code
● i/o 

● Domain decomposition

● Some aspects of mesh construction

● Marking tasks as active or inactive (loop over task list)

● Scheduling the tasks (loop over task list)

● Reduction of time-step (loop over cells)

In summary:

● Physics perfectly load balanced, scales well

● Bottlenecks down to “maintenance” that is run serially in between time steps



Quick and dirty solution: OpenMP
● Could use OpenMP for these simple loops.

● As always comes with some issues:

○ No fine control over threads

○ Hard to interface with the rest of the task-based system (pthread)

○ Overheads



Quick and dirty solution: OpenMP
● Could use OpenMP for these simple loops.

● As always comes with some issues:

○ No fine control over threads

○ Hard to interface with the rest of the task-based system (pthread)

○ Overheads

Instead implement a lightweight pool of threads and mapper functions



Threadpool: Main idea
● Create a set of additional (p)threads.

● Make the threads wait at a barrier.

● Create a “map” function to be called on a chunk of the arrays.

● When required unleash the the threads on chunks of the array, each calling the 

map function.

Essentially a lightweight version of OpenMP



Threadpool: Example for user
void stats_collect_part_mapper(void *map_data, int nr_parts, void 
*extra_data) {

  struct part* particles = (struct part*) map_data;

  /* Loop over particles */
  for (int k = 0; k < nr_parts; k++) {

Stats.energy += particles[k].energy // for example
  }
}

// Elsewhere...
threadpool_map(threadpool, stats_collect_part_mapper, s->parts,
               s->nr_parts, sizeof(struct part), 10000);



Threadpool: Under the hood
while (1) {
  /* Desired chunk size. */
  size_t chunk_size =
      (tp->map_data_size - tp->map_data_count) / (2 * tp->num_threads);

  /* Get a chunk and check its size. */
  size_t task_ind = atomic_add(&tp->map_data_count, chunk_size);
  if (task_ind >= tp->map_data_size) break;
  if (task_ind + chunk_size > tp->map_data_size)
    chunk_size = tp->map_data_size - task_ind;

  /* Call the mapper function. */
tp->map_function((char *)tp->map_data + (tp->map_data_stride *

 task_ind), chunk_size, tp->map_extra_data);
}



Results



Back to the time per particles



Results
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Showing KNL only here.

Better efficiency. Achieve good scaling up 

to 32 cores. Still struggling to go to 64 

cores. 

Also improved performance on 1 core. 

Lowered time to solution.

Regular Xeon also benefits from solution 

(not shown here). Now 23x vs. Gadget 

instead of 17x on 16 cores !

Master branch
16 threads: 77% efficiency
32 threads: 64% efficiency  

Threadpool branch
16 threads: 90% efficiency
32 threads: 84% efficiency



Future work



Some more improvements
Reduce the number of scalar sections (Amdahl’s law):

● Efficient i/o

● Fully parallel tree construction

● More parallel domain decomposition

Other implementation “details” :

● Make the threadpool a tiny bit smarter to reduce the need for magical constants



Open issues
Need better linux kernel ? From vTune analysis:

Function                                                      CPU Time
---------------------------------------------------------------  ---------
runner_dopair2_force                                         5190.928s
runner_do_sort_ascending                                     3938.856s
runner_dopair1_density                                       3136.735s
runner_dopair_subset_density                                 2163.073s
runner_doself_subset_density                                 1989.453s
runner_doself1_density                                       1963.123s
runner_do_sort                                               1816.893s
runner_doself2_force                                         1811.123s
runner_iact_force                                            1000.722s
__do_softirq                                                  958.811s
runner_iact_nonsym_density                                    939.821s
space_parts_sort_mapper                                       799.911s
cell_split                                                    787.111s
[...]

Linux  3.10.0-327.36.2.el7.x86_64



Conclusions
● KNL is hard (and not just because of AVX-512)

● Parallelisation of all parts of the code is necessary 

● Using a very lightweight threadpool mechanism to parallelize simple section 

helps.

● Gains also apply to Xeon

● Is the current linux kernel up-to-date for KNL ?


