The cosmological
hydrodynamical code SWIFT

Matthieu Schaller

Institute for Computational Cosmology, Durham University, UK
6" July 2017

This work is a collaboration between 2 departments at Durham University (UK):
" The Institute for Computational Cosmology,
" The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of St-Andrews
(UK), Lausanne (Switzerland) and the DIRAC software team.

This research is partly funded by an Intel IPCC since January 2015.

What we do and how we do it

" Astronomy / Cosmology simulations of the
formation of the Universe and galaxy
evolution.

" EAGLE project’. 48 days of computing on
4096 cores. >500 TBytes of data products
(post-processed data is public!). Most cited
astronomy paper of 2015 (out of >26000).

" Simulations of gravity and hydrodynamic

One simulated galaxy out of the

forces with a spatial dynamic range spanning 6 EAGLE virtual universe.
orders of magnitude running for
>2M time-steps. 1) www.eaglesim.org

http://www.eaglesim.org/

EAGLE: Evolution and Assembly of GalLaxies and their Environments
The evolution of intergalactic gas. Colour encodes temperature

z = 14.0
&5 0.3 Gyr Visualisation by
L = 25.0 cMpc Jim Geach & Rob Crain

SPH scheme: The problem to solve

For a set of N (>10°) particles, we want to exchange hydrodynamical forces
between all neighbouring particles within a given (time and space variable)
search radius. Large density imbalances develop over time.

Challenges:
" Particles are unstructured in space, large density variations.
" Particles will move and the neighbour list of each particle evolves over
time.
" Interaction between two particles is computationally cheap
(low flop/byte ratio).

SPH scheme: The traditional method

The “industry standard” cosmological code

is GADGET (Springel et al.1999, Springel 2005).
" MPI-only code.

" Neighbour search based on oct-tree.

" QOct-tree implies “random” memory walks
- Lack of predictability.

- Nearly impossible to vectorize.

- Very hard to load-balance.

o

) o
000 o

boO OQO 002 © 1600 OOO Q
ol ° [SLol ol e |o
° |o °[doPdelBfe’] ©| ©

0
o |o° 0o . 20 ©
o)
de| © |o [Dleo
J° o 2| o [efog o

0000

SPH scheme: The SWIFT way

: o

Need to make things regular and g
predictable: O i

¢ o

" Neighbour search is performed via the o 6_
use of an adaptive grid constructed :
recursively until we get ~500 particles @ i
percell. L - ?

" Cell spatial size matches search radius.)]
" Particles interact only with partnersin ~~ ~——--- .,,
their own cell or one of the 26 !
neighbouring cells o

SPH scheme: The SWIFT way

Retain the large fluctuations in
density by splitting cells:

" If cells have ~400 particles they fit in the
L2 caches.

" Makes the problem very local and fine-
grained.

SPH scheme: The SWIFT way

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells (>1 000 000)
for (int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count i = cells[ci].count; // Around 400-500
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++3j) {

struct part *pi = &parts[i];
&parts[j];

struct part *pj

INTERACT (pi, p3J): // symmetric interaction

b}

SPH scheme: The SWIFT way

Threads + MPI

for (int ci=0; ci < nr_cells; ++ci) {
for (int cj=0; cj < 27; ++cj) { t

A

Vectorization
for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++3j) {

INTERACT (pi, pj):;

b}

Single-node parallelisation

Task-based parallelism

SPH scheme: Single-node parallelization

. ® | | |
No need to process the cell pairs in | P 0 . ©
P i . I . [1 . I
any specific order: : : | :
"""" i B) N A
" ->No need to enforce and order. .: O i .i ©
" -> Only need to make sure we don’t Q_____ ;_ ______ : : N
process pairs that use the same cell. .
® -> Pairs could have vastly different P i o
runtimes since they can havevery | @ .
different particle numbers. o i i
. @
———————— o e
© o |
© | e e : ©

SPH scheme: Single-node parallelization

. ® | | |
No need to process the cell pairs in I~ o | . ©
any specific order: © | - O
"""" i B) N A
" ->No need to enforce and order. .: O i .i ©
" -> Only need to make sure we don’t Q_____ ;_ ______ : : N
process pairs that use the same cell. .
® -> Pairs could have vastly different P i o
runtimes since they can havevery | @ .
different particle numbers. o i i
________ S
We need dynamic o °o
scheduling ! © | o | e | ©

Task-base parallelism 101

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most of
the problems associated with concurrency and load-balancing.

" We first reduce the problem to a
set of inter-dependent tasks.

= For each task, we need to know:
Which tasks it depends on,
Which tasks it conflicts with.

* Each thread then picks up a task which has
no unresolved dependencies or conflicts and computes it.

= We use our own (problem agnostic !) Open-source library QuickSched (arxiv:1601.05384)

Task-base parallelism for SPH

" For two cells, we have the task graph shown on the
right.

" Arrows depict dependencies, dashed lines show
conflict.

" Ghost tasks are used to link tasks and reduce
the number of dependencies.

integrator

force

ghost

density

sort

sort

SPH scheme: Single node parallel performance

19

ﬁ: == sUb_pair/density - self/density kickl

16 4 pair/density = drift_part — kick2
15 ¢ === sub self/density sort — timestep
SO | 118U W T AN 10010 A1

1o 4+ AL OO LT ONWONAT]B ||||||||||||||||||||||||||||||||||||||| ML IR T ||||I

vg 4 IR LE DT 0 R | I RE 0 A AT Y T VAR R s [T T

OO | AU OO TR AT 1 A N TNV NN
OO 1T I IO TAEE T T R TR O T TN
g | IUEOTIE OO 1 0 SN 0 W w10 |II|II|I|I|I||I||||I | 11K
74+ RUICIIR L TR IO M RERY TR I|II|||I||I:
S I 1 O RORMLREIEARR) 1] T II|II I|I |I|I|||I||I|||I||| ||III||I|I|I |II||||II
O A A RIEL TR AT L
2 v L | T I|||I|I|I|III|II||I||| I||II|I ||||II| |II||||||I I||II| ||I|II|I|||| I|I|
LN T S o 1 AT O AL M
L WA |||||||||I|||| |IIII|I- II ||||II|I II I|| IIII || |III || |I|I|I|||I |I+

| | IIL LA |
AL 10T AT R ||| I|I|II|I NIRRT ||| |||I| |II || I|I I| |III|I 0] |II||| I! |III||||||||M

i

i

I

| .

0 lDDU 2000 3000
Wall clock time Imsl

Thread 1D
o

Task graph for one time-step.
Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

\ 19

http://arxiv.org/abs/1601.05384

Single node performance vs. Gadget

Realistic problem (video from start of the talk)

= Same accuracy.

Same hardware.

Same compiler.

Same solution.

More than 24x speed-up vs. “industry
standard” Gadget code.

Wallclock time to solution [ms]

108}

—
ja-]
-1
T

—
j—]
=21
T

10°

e, Gadget-2

= SWIFT v0.5.0

10°

10!
Threads

= 3
~ Wallclock time to solution [hr]

_
3

Result: Formation of a galaxy on a KNL

Credit: S. Arridge

.22

SIMD parallellsatlon

Explicit vectorizatio

Explicit vectorization of the core routines.
Cell A

Example of a task interacting all particles <~
within one cell. 3

Thanks to our task-based parallel framework:
" No need to worry about MPI

" No need to worry about threading or race
conditions

" Full problem holds in L2 cache.

for (i =0; 1< ci->count; ++i) {

BrUte-force hig2 = hi * hi * kernel_gamma2;
implementation for (int 3 = 03 3 < chocount; 443 {

hjg2 = hj * hj * kernel_gamma2;
/* Check that particle doesn't interact with itself */

" Very simple to write if (pi == pj) continue;
" Compilers can in principle /* Pairwise distance */
i : ” r2 = 0.0ef;
auto-vectorize” the whole o e b os ks e ¢
problem. dxi[k] = pi->x[k] - pj->x[k];
r2 += dxi[k] * dxi[k];
}

/* Update pi? */
if (r2 < hig2) INTERACT(r2, dxi, hi, hj, pi, pj);

/* Update pj? */
if (r2 < hjg2) INTERACT(r2, -dxi, hj, hi, pj, pi);

I

for (i=0; i< ci->count; ++i) {

BrUte-force hig2 = hi * hi * kernel_gamma2;
implementation for (int 3 = 03 3 < chocount; 443 {

hjg2 = hj * hj * kernel_gamma2;
/* Check that particle doesn't interact with itself */

. VeW Simple to write if (pi == pj) continue;

" Compilers can in principle /* Pairwise distance */
173 . ” - 0.0f;
auto-vectorize” the whole =00

for (k = 0; k < 3; k++) {
problem. dxi[k] = pi->x[k] - pj->x[k];
r2 += dxi[k] * dxi[k];
}
. But most pairs of particles will

not interact.... /* Update pi? */

if (r2 < hig2) INTERACT(r2, dxi, hi, hj, pi, pj);

Need to manually implement /* Update pj? */

a better solution if (r2 < hjg2) INTERACT(r2, -dxi, hj, hi, pj, pi);
}

S I

Step 1: Form a local cache of particles

Particles
(A0S)

Particles x:
(S0A)

X

2

Y,

Step 2: Find pairs and pack them in a 2" cache

Vectormask: [1/0/1]0|0|10|10]1
(r* < h?)

2 2 2 2 2 2 2 2 2
Vector r2: | r2 | 12,12 |12, | r2 | 2| 12| 12,

Secondary rz: [r2 [rz_|r? | r
Cache

(SDA) IT'IJ.Z ml I'T'I3 ma mg

"JJ.Z Vo | V| Vg Vg -

dx: |dx. |dx.|dx, |dx

Step 3: Process all pairs in the 2" cache

vector densitySum;
density = setzero();

for (pjd = ©; pjd < icount; pjd+=VEC SIZE) {
INTERACT(&c2 r2[pjd], &c2 dx[pjd], &c2 dy[pjd],
&c2 dz[pjd], &c2 m[pjd], &c2 v[pjd],
&densitySum);

VEC_HADD(densitySum,pi);

Vectorization results

CFLAGS Speed-up over Speed-up over
naive brute force best serial
version
-03 -xAVX 2.93x 1.94x
-03 -xCORE-AVX2 3.64x 2.74x
-03 -xMIC- 4.37x 2.80x
AVX512

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for
fairness

Software Development
Best Practices

A few tips from experience

Use a version control system and repository
* Allows to store your work at many stages.
* Allows to roll back to older versions.

* Allows to search for the point where bugs were introduced.

* Allows branching/forking.

Use a version control system

SWIFT / SWIFTsim ~ - Commits

master

904 Jul, 2017

1 commit

503 Jul, 2017
3 commits

802 Jul, 2017

1 commit

£830 Jun, 2017

3 commits

929 Jun, 2017

5 commits

v swiftsim

Merge branch 'number_of_links' into 'master’

—‘|._1’ Peter W. Draper authored a day ago

Merge branch 'better-trigger' into 'master’
—‘:‘/ Peter W. Draper authored 2 days age

formatting
—‘|._1’ Peter W. Draper authored 2 days ago

repartitioning: make the trigger correctly with a value of 2, previously the min...

—‘:_1’ Peter W. Draper authored 2 days agoe

Cosmetic change to the MPI start-up message.
_;;f Matthieu Schaller authored 3 days age

Correctly count the number of cell->task links required and only create the nece...
_;.g Matthieu Schaller authored 5 days age

Merge branch "analyse_script_shows_updates_and_sid2' into 'master’

—‘:_1’ Peter W. Draper authored 5 days age

plot analysis: separate each MPI rank into its own file and associate with the appropriate figure

-‘"ﬁ Peter W. Draper authored 5 days age

Applied @d74sky's suggestion to put the legend of the plots outside of the plott...
_;-f Matthieu Schaller authored 6 days ago

Search e +

Filter by commit message B

Iy 26119327

Browse Files »

Iy 4e5az2ecc

Browse Files »

Iy 3bedd654

Browse Files »

Iy 3feclc3l

Browse Files »

Iy 92544e48

Browse Files »

R 080200da

Browse Files »

Iy 582043c7

Browse Files »

Iy cf53e67a

Browse Files »

Iy 57cfc386

Browse Files »

=

Use automated (unit) tests

Allows to track unspotted bugs.

Allows to track regression.

Secures the stability of the software.

Run daily or at each commit.

Use automated (unit) tests

Allows to track unspotted bugs.

Allows to track regression.

Secures the stability of the software.

Run daily or at each commit.

Use automated

0.8

Velocity vy
= S
S o

<
[N

0.0

22

Internal Energy «
= = = = o
[\ IS = o« =)

,_.
(=)

<o
0

unit) tests

1.0

<
]

Pressure P
i
[=)}

0.4

0.2

1.0
0.8
Q
20.6
g
a
0.4
0.2
Il Il Il Il Il Il Il Il Il
—04 —0.2 0.0 0.2 0.4 —0.4 —0.2 0.0 0.2 0.4
Position x Position x
1.0 } g
Il Il Il Il Il Il Il Il Il Il
—-0.4 -0.2 0.0 0.2 0.4 -0.4 —-0.2 0.0 0.2 04
Position x Position x

Il Il
—0.2 0.0 0.2 0.4
Position x

—0.4

Sod shock with y=1.667 in 3D at r = 0.20
Left: (P.,pr.vz) = (1.000,1.000,0.000)

Right: (P, pg,vr) = (0.100,0.125,0.000)

SWIFT v0.4.0-159-g75f94017-dirty
Pressure-Entropy SPH (Hopkins 2013)
Cubic spline (M4)

48.00 neighbours (n = 1.235)

Documentation

* Necessary to keep track of code.
* Make sure you understand what you wrote.

* Very important when working in teams.

* Many formats and automated software.

Documentation

**

*

@rief Constructs the top-level pair tasks for the first hydro loop over
neighbours

Here we construct all the tasks for all possible neighbouring non-empty

local cells in the hierarchy. No dependencies are being added thus far.

Additional loop over neighbours can later be added by simply duplicating
all the tasks created by this function.

* K K K K ¥ W ¥

@param e The #engine.
*/
void engine make hydroloop tasks(struct engine *e) {...}

JREL
~ attribute ((always inline)) INLINE static int cell need rebuild for pair(
cfnst struct cell *ci, const struct cell *cj) {

/* Is the cut-off radius plus the max distance the parts in both cells have */
/* moved larger than the cell size 7 */
/* Note ci->dmin == cj->dmin */
return (kernel gamma * max(ci->h max, cj->h max) + ci->dx max part +
cj->dx_max_part >
Ccj->dmin);

53

More on SWIFT

Completely open-source software including all the examples and scripts.
~30°000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadgetcode on the same
setup and same architecture. Thanks to:
" Better algorithms
" Better parallelisation strategy
" Better domain decomposition strategy

Fully compatible with Gadgetin terms of input and output files.

More on SWIFT

Completely open-source software including all the examples and scripts.
~30°000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadgetcode on the same
setup and same architecture. Thanks to:
" Better algorithms
" Better parallelisation strategy
" Better domain decomposition strategy

Fully compatible with Gadgetin terms of input and output files.

More on SWIFT

Gravity solved using a FMM and mesh for
periodic and long-range forces.

Gravity and hydrodynamics are solved at the
same time on the same particles as
different properties are updated. No need
for an explicit lock.

I/O done using the (parallel) HDF5 library,
currently working on a continuous
asynchronous approach.

Task-based parallelism allows for very simple
code within tasks.
— Very easy to extend with new physics
without worrying about parallelism.

Conclusion and Outlook

Collaboration between Computer scientists and physicists works!
Successfully decomposed the parallelization in three separate problems.
Developed usable simulation software using state-of-the-art paradigms.
Great strong-scaling results up to >100°000 cores.

Future: Addition of more physics to the code.

Future:; Parallelisation of i/o.

Thank you for your time

Matthieu Schaller

www.swiftsim.org

	Slide 1
	Slide 2
	Introduction
	What we do and how we do it
	Slide 5
	SPH scheme: The problem to solve
	SPH scheme: The traditional method
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	Single-node parallelisation
	SPH scheme: Single-node parallelization
	SPH scheme: Single-node parallelization
	Task-base parallelism 101
	Task-base parallelism for SPH
	SPH scheme: Single node parallel performance
	Single node performance vs. Gadget
	Result: Formation of a galaxy on a KNL
	SIMD parallelisation
	Explicit vectorization of the core routines.
	Brute-force implementation
	Brute-force implementation
	Step 1: Form a local cache of particles
	Step 2: Find pairs and pack them in a 2nd cache
	Step 3: Process all pairs in the 2nd cache
	Vectorization results
	Conclusions
	More on SWIFT
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	More on SWIFT
	Conclusion and Outlook
	Slide 58

