
SWIFT: Scheduling tasks efficiently on 256
cores - The KNL challenge

Matthieu Schaller, Pedro Gonnet, Aidan B. G. Chalk, James S. Willis,

 Peter W. Draper & SWIFT team

Durham University, UK

IPCC-EMEA fall meeting 2016 -- Toulouse, France -- 26 October 2016

This work is a collaboration between two departments at Durham University (UK):

● The Institute for Computational Cosmology,

● The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent (Belgium),

St-Andrews (UK), Lausanne (Switzerland), Perth (Australia), Paris (France) and the

DiRAC software team.

This research is funded by an Intel IPCC since March 2015.

SPH scheme: The problem to solve
● For a set of N (>10

9

) particles, we want to

exchange hydrodynamical forces between all

neighbouring particles within a given (time

and space variable) search radius.

● Very similar to molecular dynamics but

requires two loops over the neighbours.

● Challenges:

○ Particles are unstructured in space, large

density variations.

○ Particles will move and the neighbour list of

each particle evolves over time.

○ Interaction between two particles is

computationally cheap (low flop/byte).

3

SPH scheme: Single-node parallelization
● Neighbour search is performed via the use of

an adaptive grid constructed recursively

until we get ~500 particles per cell.

● Cell spatial size matches search radius.

● Particles interact only with partners in their

own cell or one of the 26 neighbouring cells.

● Amount of “work” per cell varies but order

in which cells or pairs of cells is irrelevant.

→ Perfect for task-based parallelism.

→ Two tasks acting on the same cell conflict.

→ The tasks of the second loop depend on

the tasks of the first loop.

4

Task based parallelism

5

● Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly

parallelizable way that automatically avoids most of the problems associated with concurrency and

load-balancing.

● We first reduce the problem to a

set of inter-dependent tasks.

● For each task, we need to know:

○ Which tasks it depends on,

○ Which tasks it conflicts with.

● Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

● We use our own Open-source library QuickSched (arXiv:1601.05384)

http://arxiv.org/abs/1601.05384

SPH scheme: Single node parallel performance

6

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

SPH scheme: Single node parallel performance

7

16 cores Haswell
node.

● Blue:
16 cores

● Green:
5-15 cores

● Yellow:
3-4 cores

● Red:
1-2 cores

Comparison to Gadget

8

● Realistic problem (see James’ talk)

● Same accuracy.

● Same hardware.

● Same compiler.

● Same solution.

More than 17x speed-up vs. “industry

standard” Gadget code.

Note that vectorization is switched off here.

Challenges for KNL

9

Pathological case. Large non-tasked sections at the start of the time-step.

Challenges for KNL

10

Cosma-5: Sandy Bridge 16 cores at 2.6GHz

Messages:

● No good scaling on hyperthreads (all

architectures)

● KNL never faster than Sandy Bridge

● Need to improve scaling

performance

Note that vectorization is switched off here.

KNL in cache mode and quadrant mode.

Pinning left to the OS.

COSMA5
16 threads: 78% efficiency
32 threads: 48% efficiency

KNL
16 threads: 77% efficiency
32 threads: 64% efficiency

Another point of view

Parallelize the rest - Threadpools

Non-parallel sections of the code
● i/o

● Domain decomposition

● Some aspects of mesh construction

● Marking tasks as active or inactive (loop over task list)

● Scheduling the tasks (loop over task list)

● Reduction of time-step (loop over cells)

In summary:

● Physics perfectly load balanced, scales well

● Bottlenecks down to “maintenance” that is run serially in between time steps

Quick and dirty solution: OpenMP
● Could use OpenMP for these simple loops.

● As always comes with some issues:

○ No fine control over threads

○ Hard to interface with the rest of the task-based system (pthread)

○ Overheads

Quick and dirty solution: OpenMP
● Could use OpenMP for these simple loops.

● As always comes with some issues:

○ No fine control over threads

○ Hard to interface with the rest of the task-based system (pthread)

○ Overheads

Instead implement a lightweight pool of threads and mapper functions

Threadpool: Main idea
● Create a set of additional (p)threads.

● Make the threads wait at a barrier.

● Create a “map” function to be called on a chunk of the arrays.

● When required unleash the the threads on chunks of the array, each calling the

map function.

Essentially a lightweight version of OpenMP

Threadpool: Example for user
void stats_collect_part_mapper(void *map_data, int nr_parts, void
*extra_data) {

 struct part* particles = (struct part*) map_data;

 /* Loop over particles */
 for (int k = 0; k < nr_parts; k++) {

Stats.energy += particles[k].energy // for example
 }
}

// Elsewhere...
threadpool_map(threadpool, stats_collect_part_mapper, s->parts,
 s->nr_parts, sizeof(struct part), 10000);

Threadpool: Under the hood
while (1) {
 /* Desired chunk size. */
 size_t chunk_size =
 (tp->map_data_size - tp->map_data_count) / (2 * tp->num_threads);

 /* Get a chunk and check its size. */
 size_t task_ind = atomic_add(&tp->map_data_count, chunk_size);
 if (task_ind >= tp->map_data_size) break;
 if (task_ind + chunk_size > tp->map_data_size)
 chunk_size = tp->map_data_size - task_ind;

 /* Call the mapper function. */
tp->map_function((char *)tp->map_data + (tp->map_data_stride *

 task_ind), chunk_size, tp->map_extra_data);
}

Results

Back to the time per particles

Results

21

Showing KNL only here.

Better efficiency. Achieve good scaling up

to 32 cores. Still struggling to go to 64

cores.

Also improved performance on 1 core.

Lowered time to solution.

Regular Xeon also benefits from solution

(not shown here). Now 23x vs. Gadget

instead of 17x on 16 cores !

Master branch
16 threads: 77% efficiency
32 threads: 64% efficiency

Threadpool branch
16 threads: 90% efficiency
32 threads: 84% efficiency

Future work

Some more improvements
Reduce the number of scalar sections (Amdahl’s law):

● Efficient i/o

● Fully parallel tree construction

● More parallel domain decomposition

Other implementation “details” :

● Make the threadpool a tiny bit smarter to reduce the need for magical constants

Open issues
Need better linux kernel ? From vTune analysis:

Function CPU Time
--- ---------
runner_dopair2_force 5190.928s
runner_do_sort_ascending 3938.856s
runner_dopair1_density 3136.735s
runner_dopair_subset_density 2163.073s
runner_doself_subset_density 1989.453s
runner_doself1_density 1963.123s
runner_do_sort 1816.893s
runner_doself2_force 1811.123s
runner_iact_force 1000.722s
__do_softirq 958.811s
runner_iact_nonsym_density 939.821s
space_parts_sort_mapper 799.911s
cell_split 787.111s
[...]

Linux 3.10.0-327.36.2.el7.x86_64

Conclusions
● KNL is hard (and not just because of AVX-512)

● Parallelisation of all parts of the code is necessary

● Using a very lightweight threadpool mechanism to parallelize simple section

helps.

● Gains also apply to Xeon

● Is the current linux kernel up-to-date for KNL ?

