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This work is a collaboration between 2 departments at Durham University (UK): 

 The Institute for Computational Cosmology, 

 The School of Engineering and Computing Sciences, 

 with contributions from the astronomy group at the university of Ghent 

(Belgium), St-Andrews (UK), Lausanne (Switzerland) and the DiRAC software 

team.  

This research is partly funded by an Intel IPCC since January 2015. 

 



The problem to solve 
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What we do and how we do it 

 Astronomy / Cosmology simulations of the 

formation of the Universe and galaxy 

evolution. 

 EAGLE project1: 48 days of computing on 

4096 cores.  >500 TBytes of data products 

(post-processed data is public!). Most cited 

astronomy paper of 2015 (out of >26000). 

 Simulations of gravity and hydrodynamic 

forces with a spatial dynamic range spanning 

6 orders of magnitude running for  

>2M time-steps. 

 

One simulated galaxy out of the 

EAGLE virtual universe. 

1) www.eaglesim.org 

http://www.eaglesim.org/
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What we do and how we do it 

• Solve coupled equations of gravity and 

hydrodynamics.  

• Consider the interaction between gas and 

stars/black holes as part of a large and 

complex subgrid model. 

• Evolve multiple matter species at the same 

time. 

 

• Large density imbalances develop over time: 

→ Difficult to load-balance. 

One simulated galaxy out of the 

EAGLE virtual universe. 



SPH scheme: The problem to solve 

For a set of N (>109) particles, we want to exchange hydrodynamical forces 

between all neighbouring particles within a given (time and space variable) 

search radius. 

Very similar to molecular dynamics but requires two loops over the 

neighbours. 

Challenges: 

 Particles are unstructured in space, large density variations. 

 Particles will move and the neighbour list of each particle evolves over 

time. 

 Interaction between two particles is computationally cheap  

(low flop/byte ratio).  
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SPH scheme: The traditional method 

The “industry standard” cosmological code  

is GADGET (Springel et al.1999, Springel 2005). 

 MPI-only code. 

 Neighbour search based on oct-tree. 

 Oct-tree implies “random” memory walks 

– Lack of predictability. 

– Nearly impossible to vectorize. 

– Very hard to load-balance. 
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SPH scheme: The traditional method 
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for (int i=0; i<N; ++i) {   // loop over all particles 

  

 struct part *pi = &parts[i]; 

 

 list = tree_get_neighbours(pi->position, pi->search_radius); // get a list of ngbs 

 

 for(int j=0; j < N_ngb; ++j) {  // loop over ngbs 

 

  const struct part *pj = &parts[list[j]];  

 

  INTERACT(pi, pj);  

} } 



Need to make things regular and 

predictable: 

 

 Neighbour search is performed via the 

use of an adaptive grid constructed 

recursively until we get ~500 particles 

per cell. 

 Cell spatial size matches search radius. 

 Particles interact only with partners in 

their own cell or one of the 26 

neighbouring cells 

SPH scheme: The SWIFT way 
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Retain the large fluctuations in 

density by splitting cells: 

 

 If cells have ~400 particles they fit in the 

L2 caches.  

 Makes the problem very local and fine-

grained. 

 

SPH scheme: The SWIFT way 
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SPH scheme: The SWIFT way 
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells 

 for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci 

 

  const int count_i = cells[ci].count; 

  const int count_j = cells[cj].count; 

 

  for(int i = 0; i < count_i; ++i) { 

   for(int j = 0; j < count_j; ++j) { 

    

    struct part *pi = &parts[i]; 

    struct part *pj = &parts[j];  

     

    INTERACT(pi, pj);   // symmetric interaction 

} } } } 



SPH scheme: The SWIFT way 
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells 

 for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci 

 

  const int count_i = cells[ci].count; 

  const int count_j = cells[cj].count; 

 

  for(int i = 0; i < count_i; ++i) { 

   for(int j = 0; j < count_j; ++j) { 

    

    struct part *pi = &parts[i]; 

    struct part *pj = &parts[j];  

     

    INTERACT(pi, pj);   // symmetric interaction 

} } } } 

Vectorization 

Threads + MPI 



Task-based parallelism 
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SPH scheme: Single-node parallelization 

No need to process the cell pairs in 

any specific order: 

 

 -> No need to enforce and order. 

 -> Only need to make sure we don’t 

process pairs that use the same cell. 

 -> Pairs could have vastly different 

runtimes since they can have very 

different particle numbers. 
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SPH scheme: Single-node parallelization 

No need to process the cell pairs in 

any specific order: 

 

 -> No need to enforce and order. 

 -> Only need to make sure we don’t 

process pairs that use the same cell. 

 -> Pairs could have vastly different 

runtimes since they can have very 

different particle numbers. 
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We need dynamic scheduling ! 



Task-base parallelism 101 

Shared-memory parallel programming paradigm in which the computation is 

formulated in an implicitly parallelizable way that automatically avoids most of 

the problems associated with concurrency and load-balancing. 

 

 We first reduce the problem to a  

set of inter-dependent tasks. 

 

 For each task, we need to know: 

Which tasks it depends on, 

Which tasks it conflicts with. 

 

 Each thread then picks up a task which has  

no unresolved dependencies or conflicts and computes it. 

 
 We use our own (problem agnostic !) Open-source library QuickSched (arXiv:1601.05384 ) 
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http://arxiv.org/abs/1601.05384


Task-base parallelism for SPH 

 For two cells, we have the task graph shown on the 

right. 

 Arrows depict dependencies, dashed lines show  

conflict. 

 Ghost tasks are used to link tasks and reduce 

the number of dependencies. 
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SPH scheme: Single node parallel performance 

20 

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores. 
 



 Realistic problem (video from start of the talk) 

 Same accuracy. 

 Same hardware. 

 Same compiler (no vectorization here). 

 Same solution. 

 

 

More than 17x speed-up vs. “industry 

standard” Gadget code. 

Single node performance vs. Gadget 
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Asynchronous MPI communications 
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• A given rank will need the cells directly 

adjacent to it to interact with its particles. 

• Instead of sending all the “halo” cells at 

once between the computation steps, we 

send each cell individually using MPI 

asynchronous communication primitives.  

• Sending/receiving data is just another task 

type, and can be executed in parallel with 

the rest of the computation. 

• Once the data has arrived, the scheduler 

unlocks the tasks that needed the data. 

• No global lock or barrier ! 

Asynchronous communications as tasks 

 

 



Asynchronous communications as tasks 

Communication tasks do not perform any computation: 

 Call MPI_Isend() / MPI_Irecv() when enqueued. 

 Dependencies are released when MPI_Test() says the data has been 

sent/received. 

 

Not all MPI implementations fully support the MPI v3.0 standard. 

 Uncovered several bugs in different implementations providing 
MPI_THREAD_MULTIPLE. 

 e.g.: OpenMPI 1.x crashes when running on Infiniband! 

 

Most experienced MPI users will advise against creating so many send/recv. 
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Asynchronous communications as tasks 

 Message size is 5-10kB. 

 On 32 ranks with 16M particles in 250’000 

cells, we get ~58’000 point-to-point 

messages per time-step! 

 Relies on MPI_THREAD_MULTIPLE as all the 

local threads can emit sends and receives. 

 Spreads the load on the network over the 

whole time-step.  

→ More efficient use of the network! 

→ Not limited by bandwidth. 
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Intel ITAC output from 2x36-cores Broadwell nodes. Every black line 

is a communication between two threads (blue bands). 



Asynchronous communications as tasks 

 Message size is 5-10kB. 

 On 32 ranks with 16M particles in 250’000 

cells, we get ~58’000 point-to-point 

messages per time-step! 

 Relies on MPI_THREAD_MULTIPLE as all the 

local threads can emit sends and receives. 

 Spreads the load on the network over the 

whole time-step.  

→ More efficient use of the network! 

→ Not limited by bandwidth. 

 

 

26 

Intel ITAC output from 2x36-cores Broadwell nodes. >10k 

point-to-point communications are reported over this time-

step. 



Domain decomposition 

 For each task we compute the amount of work 

(=runtime) required. 

 We can build a graph in which the simulation data 

are nodes and the tasks operation on the data are 

hyperedges. 

 The task graph is split to balance the work (not the 

data!) using the METIS library. 

 Tasks spanning the partition are computed on both 

sides, and the data they use needs to be 

sent/received between ranks. 

 Send and receive tasks and their dependencies are 

generated automatically. 
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Domain decomposition 

Domain geometry can be complex. 
 No regular grid pattern. 

 No space-filling curve order. 

 Good load-balancing by construction. 

 

Domain shapes and computational costs 

evolve over the course of the simulation. 
 Periodically update the graph partitioning. 

 May lead to large (unnecessary?) re-

shuffling of the data across the whole 

machine. 
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Particles coloured by the domain they belong to for a 

cosmological simulation.  

The domains are un-structured. 



Multiple node parallel performance 
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Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8 nodes of 12 cores. 



Scaling results: DiRAC Data Centric facility Cosma-5 

System: x86 architecture - 2 Intel Sandy Bridge-EP Xeon E5-2670 at 2.6 GHz with 128 GByte of RAM per 

node. 
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Scaling results: SuperMUC (#22 in Top500) 

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of RAM per 

node. 
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Scaling results: JUQUEEN (#11 in Top500) 

System: BlueGene Q - IBM PowerPC A2 processors running at 1.6 GHz with 16 GByte of RAM per node. 
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Scaling results 
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 Almost perfect strong-scaling performance on a 

cluster of many-core nodes when increasing the 

number of threads per node (fixed #MPI ranks). 

 Clear benefit of task-based parallelism and 

asynchronous communication. 

 Future-proof! As the thread/core count per node 

increases, so does the code performance. 

 Why?  

→ Because we don’t rely on MPI for intra-node 

communications. 



Explicit vectorization using intrinsics 
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Explicit vectorization of the core routines. 

Example of a task interacting all particles 

within one cell. 

 

Thanks to our task-based parallel framework: 

 No need to worry about MPI 

 No need to worry about threading or race 

conditions 

 Full problem holds in L2 cache. 
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Brute-force  

implementation 
 

 Very simple to write 

 Compilers can in principle 

“auto-vectorize” the whole 

problem. 
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Brute-force  

implementation 
 

 Very simple to write 

 Compilers can in principle 

“auto-vectorize” the whole 

problem. 

 

... But most pairs of particles will 

not interact.... 

 

Need to manually implement 

a better solution 
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Explicit vectorization: strategy 

• Use local particle cache 

• Find particles that interact and store them in a secondary cache 

• Calculate all interactions on a particle and store results in a set of 
intermediate vectors 

• Perform horizontal add on intermediate vectors and update the particle with 
the result 

• Process 2 vectors at a time when entering the interaction loop in order to 
overlap independent instructions 

• Pad caches to prevent remainders and mask out the result 

 

 

 



Step 1: Form a local cache of particles 

39 



Step 2: Find pairs and pack them in a 2nd cache 
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Step 3: Process all pairs in the 2nd cache 
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Detailed vTune analysis showed 

limitations due to bubble 

forming in the pipeline and 

loads blocked by store 

forwarding. 

 

Solution: Interleave operations 

from 2 vectors. 

 

Improvements: Process two vectors at a time 
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Vectorization results 

CFLAGS Speed-up over naïve 

brute force 

Speed-up over best 

serial version 

-O3 -xAVX 2.93x 1.94x 

-O3 -xCORE-AVX2 3.64x 2.74x 

-O3 -xMIC-AVX512 4.37x 2.80x 

Better than the factor of 2x obtained from the auto-vectorizer 

 

In the scalar case, there is a faster algorithm with the comparison shown here for fairness 



And take-away messages 
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More on SWIFT 

Completely open-source software including all the examples and scripts. 

 

~30’000 lines of C code without fancy language extensions. 

 

More than 20x faster than the de-facto standard Gadget code on the same 

setup and same architecture. Thanks to: 
 Better algorithms 

 Better parallelisation strategy 

 Better domain decomposition strategy 

 

Fully compatible with Gadget in terms of input and output files.  
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More on SWIFT 

46 

Gravity solved using a FMM and mesh for 

periodic and long-range forces. 

Gravity and hydrodynamics are solved at the 

same time on the same particles as 

different properties are updated. No need 

for an explicit lock. 

I/O done using the (parallel) HDF5 library, 

currently working on a continuous 

asynchronous approach. 

Task-based parallelism allows for very simple 

code within tasks. 

→ Very easy to extend with new physics 

without worrying about parallelism. 



Conclusion and Outlook 

Collaboration between Computer scientists and physicists works! 

 

Successfully decomposed the parallelization in three separate problems. 

 

Developed usable simulation software using state-of-the-art paradigms. 

 

Great strong-scaling results up to >100’000 cores.  

 

Future: Addition of more physics to the code. 

 

Future: Parallelisation of i/o. 
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Matthieu Schaller 

www.swiftsim.org 

www.intel.com/hpcdevcon 


