
Matthieu Schaller

Institute for Computational Cosmology, Durham University, UK

6th July 2017

The cosmological 
hydrodynamical code SWIFT



2

This work is a collaboration between 2 departments at Durham University (UK):

 The Institute for Computational Cosmology,

 The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of St-Andrews 
(UK), Lausanne (Switzerland) and the DiRAC software team. 

This research is partly funded by an Intel IPCC since January 2015.



Introduction
The problem to solve
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What we do and how we do it

 Astronomy / Cosmology simulations of the 
formation of the Universe and galaxy 
evolution.

 EAGLE project1: 48 days of computing on 
4096 cores.  >500 TBytes of data products 
(post-processed data is public!). Most cited 
astronomy paper of 2015 (out of >26000).

 Simulations of gravity and hydrodynamic 
forces with a spatial dynamic range spanning 6 
orders of magnitude running for 
>2M time-steps.

One simulated galaxy out of the 
EAGLE virtual universe.

1) www.eaglesim.org

http://www.eaglesim.org/
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SPH scheme: The problem to solve

For a set of N (>109) particles, we want to exchange hydrodynamical forces 
between all neighbouring particles within a given (time and space variable) 
search radius. Large density imbalances develop over time.

Challenges:
 Particles are unstructured in space, large density variations.
 Particles will move and the neighbour list of each particle evolves over 

time.
 Interaction between two particles is computationally cheap 

(low flop/byte ratio). 
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SPH scheme: The traditional method

The “industry standard” cosmological code 

is GADGET (Springel et al.1999, Springel 2005).

 MPI-only code.

 Neighbour search based on oct-tree.

 Oct-tree implies “random” memory walks

– Lack of predictability.

– Nearly impossible to vectorize.

– Very hard to load-balance.
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Need to make things regular and 
predictable:

 Neighbour search is performed via the 
use of an adaptive grid constructed 
recursively until we get ~500 particles 
per cell.

 Cell spatial size matches search radius.

 Particles interact only with partners in 
their own cell or one of the 26 
neighbouring cells

SPH scheme: The SWIFT way
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Retain the large fluctuations in 
density by splitting cells:

 If cells have ~400 particles they fit in the 
L2 caches. 

 Makes the problem very local and fine-
grained.

SPH scheme: The SWIFT way

11



SPH scheme: The SWIFT way
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells (>1 000 000)
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;  // Around 400-500
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj);   // symmetric interaction
} } } }



SPH scheme: The SWIFT way
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj);   // symmetric interaction
} } } }

Vectorization

Threads + MPI



Single-node parallelisation
Task-based parallelism
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SPH scheme: Single-node parallelization

No need to process the cell pairs in 
any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t 
process pairs that use the same cell.

 -> Pairs could have vastly different 
runtimes since they can have very 
different particle numbers.
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We need dynamic 
scheduling !



Task-base parallelism 101

Shared-memory parallel programming paradigm in which the computation is 
formulated in an implicitly parallelizable way that automatically avoids most of 
the problems associated with concurrency and load-balancing.

 We first reduce the problem to a 
set of inter-dependent tasks.

 For each task, we need to know:
Which tasks it depends on,
Which tasks it conflicts with.

 Each thread then picks up a task which has 
no unresolved dependencies or conflicts and computes it.

 We use our own (problem agnostic !) Open-source library Q uickSched (arXiv:1601.05384 )
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Task-base parallelism for SPH

 For two cells, we have the task graph shown on the
right.

 Arrows depict dependencies, dashed lines show 
conflict.

 Ghost tasks are used to link tasks and reduce
the number of dependencies.
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SPH scheme: Single node parallel performance
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Task graph for one time-step. 
Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

http://arxiv.org/abs/1601.05384


 Realistic problem (video from start of the talk)

 Same accuracy.

 Same hardware.

 Same compiler.

 Same solution.

More than 24x speed-up vs. “industry 
standard” Gadget code.

Single node performance vs. Gadget
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24.3x



Result: Formation of a galaxy on a KNL
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Credit: S. Arridge



SIMD parallelisation
Explicit vectorization using intrinsics
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Explicit vectorization of the core routines.

Example of a task interacting all particles 
within one cell.

Thanks to our task-based parallel framework:

 No need to worry about MPI

 No need to worry about threading or race 
conditions

 Full problem holds in L2 cache.

36



Brute-force 
implementation

 Very simple to write

 Compilers can in principle 
“auto-vectorize” the whole 
problem.
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Brute-force 
implementation

 Very simple to write

 Compilers can in principle 
“auto-vectorize” the whole 
problem.

... But most pairs of particles will 
not interact....

Need to manually implement 
a better solution
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Step 1: Form a local cache of particles
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Step 2: Find pairs and pack them in a 2nd cache
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Step 3: Process all pairs in the 2nd cache
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Vectorization results

CFLAGS Speed-up over 
naïve brute force

Speed-up over 
best serial 

version

-O3 -xAVX 2.93x 1.94x

-O3 -xCORE-AVX2 3.64x 2.74x

-O3 -xMIC-
AVX512

4.37x 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for 
fairness

Xeon ~ 2011

Xeon ~ 2014

KNL   2016
Xeon  2017



Software Development 
Best Practices
A few tips from experience
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Use a version control system and repository

● Allows to store your work at many stages.

● Allows to roll back to older versions.

● Allows to search for the point where bugs were introduced.

● Allows branching/forking.
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Examples: git, svn, mercurial,...

Many online platforms offer free services



Use a version control system
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Use automated (unit) tests

● Allows to track unspotted bugs.

● Allows to track regression.

● Secures the stability of the software.

● Run daily or at each commit.
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Examples: jenkins, travis,…

Again, many online platforms linked to repositories 
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Examples: jenkins, travis,…

Again, many online platforms linked to repositories 



Use automated (unit) tests
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Documentation

● Necessary to keep track of code. 

● Make sure you understand what you wrote.

● Very important when working in teams.

● Many formats and automated software.

51

Examples: doxygen, readthedocs,...

Again, many online platforms linked to repositories 



Documentation
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Conclusions
And take-away messages
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More on SWIFT

Completely open-source software including all the examples and scripts.

~30’000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadget code on the same 
setup and same architecture. Thanks to:

 Better algorithms
 Better parallelisation strategy
 Better domain decomposition strategy

Fully compatible with Gadget in terms of input and output files. 
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More on SWIFT
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Gravity solved using a FMM and mesh for 
periodic and long-range forces.

Gravity and hydrodynamics are solved at the 
same time on the same particles as 
different properties are updated. No need 
for an explicit lock.

I/O done using the (parallel) HDF5 library, 
currently working on a continuous 
asynchronous approach.

Task-based parallelism allows for very simple 
code within tasks.
→ Very easy to extend with new physics 
without worrying about parallelism.



Conclusion and Outlook

Collaboration between Computer scientists and physicists works!

Successfully decomposed the parallelization in three separate problems.

Developed usable simulation software using state-of-the-art paradigms.

Great strong-scaling results up to >100’000 cores. 

Future: Addition of more physics to the code.

Future: Parallelisation of i/o.
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Thank you for your time
Matthieu Schaller

www.swiftsim.org
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