
Matthieu Schaller

Institute for Computational Cosmology, Durham University, UK

6th July 2017

The cosmological
hydrodynamical code SWIFT

2

This work is a collaboration between 2 departments at Durham University (UK):

 The Institute for Computational Cosmology,

 The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of St-Andrews
(UK), Lausanne (Switzerland) and the DiRAC software team.

This research is partly funded by an Intel IPCC since January 2015.

Introduction
The problem to solve

3

4

What we do and how we do it

 Astronomy / Cosmology simulations of the
formation of the Universe and galaxy
evolution.

 EAGLE project1: 48 days of computing on
4096 cores. >500 TBytes of data products
(post-processed data is public!). Most cited
astronomy paper of 2015 (out of >26000).

 Simulations of gravity and hydrodynamic
forces with a spatial dynamic range spanning 6
orders of magnitude running for
>2M time-steps.

One simulated galaxy out of the
EAGLE virtual universe.

1) www.eaglesim.org

http://www.eaglesim.org/

5

SPH scheme: The problem to solve

For a set of N (>109) particles, we want to exchange hydrodynamical forces
between all neighbouring particles within a given (time and space variable)
search radius. Large density imbalances develop over time.

Challenges:
 Particles are unstructured in space, large density variations.
 Particles will move and the neighbour list of each particle evolves over

time.
 Interaction between two particles is computationally cheap

(low flop/byte ratio).

7

SPH scheme: The traditional method

The “industry standard” cosmological code

is GADGET (Springel et al.1999, Springel 2005).

 MPI-only code.

 Neighbour search based on oct-tree.

 Oct-tree implies “random” memory walks

– Lack of predictability.

– Nearly impossible to vectorize.

– Very hard to load-balance.

8

Need to make things regular and
predictable:

 Neighbour search is performed via the
use of an adaptive grid constructed
recursively until we get ~500 particles
per cell.

 Cell spatial size matches search radius.

 Particles interact only with partners in
their own cell or one of the 26
neighbouring cells

SPH scheme: The SWIFT way

10

Retain the large fluctuations in
density by splitting cells:

 If cells have ~400 particles they fit in the
L2 caches.

 Makes the problem very local and fine-
grained.

SPH scheme: The SWIFT way

11

SPH scheme: The SWIFT way

12

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells (>1 000 000)
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count; // Around 400-500
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj); // symmetric interaction
} } } }

SPH scheme: The SWIFT way

13

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj); // symmetric interaction
} } } }

Vectorization

Threads + MPI

Single-node parallelisation
Task-based parallelism

14

SPH scheme: Single-node parallelization

No need to process the cell pairs in
any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t
process pairs that use the same cell.

 -> Pairs could have vastly different
runtimes since they can have very
different particle numbers.

15

SPH scheme: Single-node parallelization

No need to process the cell pairs in
any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t
process pairs that use the same cell.

 -> Pairs could have vastly different
runtimes since they can have very
different particle numbers.

16

We need dynamic
scheduling !

Task-base parallelism 101

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most of
the problems associated with concurrency and load-balancing.

 We first reduce the problem to a
set of inter-dependent tasks.

 For each task, we need to know:
Which tasks it depends on,
Which tasks it conflicts with.

 Each thread then picks up a task which has
no unresolved dependencies or conflicts and computes it.

 We use our own (problem agnostic !) Open-source library Q uickSched (arXiv:1601.05384)

17

Task-base parallelism for SPH

 For two cells, we have the task graph shown on the
right.

 Arrows depict dependencies, dashed lines show
conflict.

 Ghost tasks are used to link tasks and reduce
the number of dependencies.

18

SPH scheme: Single node parallel performance

19

Task graph for one time-step.
Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

http://arxiv.org/abs/1601.05384

 Realistic problem (video from start of the talk)

 Same accuracy.

 Same hardware.

 Same compiler.

 Same solution.

More than 24x speed-up vs. “industry
standard” Gadget code.

Single node performance vs. Gadget

21

24.3x

Result: Formation of a galaxy on a KNL

22

Credit: S. Arridge

SIMD parallelisation
Explicit vectorization using intrinsics

35

Explicit vectorization of the core routines.

Example of a task interacting all particles
within one cell.

Thanks to our task-based parallel framework:

 No need to worry about MPI

 No need to worry about threading or race
conditions

 Full problem holds in L2 cache.

36

Brute-force
implementation

 Very simple to write

 Compilers can in principle
“auto-vectorize” the whole
problem.

37

Brute-force
implementation

 Very simple to write

 Compilers can in principle
“auto-vectorize” the whole
problem.

... But most pairs of particles will
not interact....

Need to manually implement
a better solution

38

Step 1: Form a local cache of particles

40

Step 2: Find pairs and pack them in a 2nd cache

41

Step 3: Process all pairs in the 2nd cache

42

Vectorization results

CFLAGS Speed-up over
naïve brute force

Speed-up over
best serial

version

-O3 -xAVX 2.93x 1.94x

-O3 -xCORE-AVX2 3.64x 2.74x

-O3 -xMIC-
AVX512

4.37x 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for
fairness

Xeon ~ 2011

Xeon ~ 2014

KNL 2016
Xeon 2017

Software Development
Best Practices
A few tips from experience

45

Use a version control system and repository

● Allows to store your work at many stages.

● Allows to roll back to older versions.

● Allows to search for the point where bugs were introduced.

● Allows branching/forking.

46

Examples: git, svn, mercurial,...

Many online platforms offer free services

Use a version control system

47

Use automated (unit) tests

● Allows to track unspotted bugs.

● Allows to track regression.

● Secures the stability of the software.

● Run daily or at each commit.

48

Examples: jenkins, travis,…

Again, many online platforms linked to repositories

Use automated (unit) tests

● Allows to track unspotted bugs.

● Allows to track regression.

● Secures the stability of the software.

● Run daily or at each commit.

49

Examples: jenkins, travis,…

Again, many online platforms linked to repositories

Use automated (unit) tests

50

Documentation

● Necessary to keep track of code.

● Make sure you understand what you wrote.

● Very important when working in teams.

● Many formats and automated software.

51

Examples: doxygen, readthedocs,...

Again, many online platforms linked to repositories

Documentation

52

Conclusions
And take-away messages

53

More on SWIFT

Completely open-source software including all the examples and scripts.

~30’000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadget code on the same
setup and same architecture. Thanks to:

 Better algorithms
 Better parallelisation strategy
 Better domain decomposition strategy

Fully compatible with Gadget in terms of input and output files.

54

More on SWIFT

Completely open-source software including all the examples and scripts.

~30’000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadget code on the same
setup and same architecture. Thanks to:

 Better algorithms
 Better parallelisation strategy
 Better domain decomposition strategy

Fully compatible with Gadget in terms of input and output files.

55

More on SWIFT

56

Gravity solved using a FMM and mesh for
periodic and long-range forces.

Gravity and hydrodynamics are solved at the
same time on the same particles as
different properties are updated. No need
for an explicit lock.

I/O done using the (parallel) HDF5 library,
currently working on a continuous
asynchronous approach.

Task-based parallelism allows for very simple
code within tasks.
→ Very easy to extend with new physics
without worrying about parallelism.

Conclusion and Outlook

Collaboration between Computer scientists and physicists works!

Successfully decomposed the parallelization in three separate problems.

Developed usable simulation software using state-of-the-art paradigms.

Great strong-scaling results up to >100’000 cores.

Future: Addition of more physics to the code.

Future: Parallelisation of i/o.

57

Thank you for your time
Matthieu Schaller

www.swiftsim.org

	Slide 1
	Slide 2
	Introduction
	What we do and how we do it
	Slide 5
	SPH scheme: The problem to solve
	SPH scheme: The traditional method
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	Single-node parallelisation
	SPH scheme: Single-node parallelization
	SPH scheme: Single-node parallelization
	Task-base parallelism 101
	Task-base parallelism for SPH
	SPH scheme: Single node parallel performance
	Single node performance vs. Gadget
	Result: Formation of a galaxy on a KNL
	SIMD parallelisation
	Explicit vectorization of the core routines.
	Brute-force implementation
	Brute-force implementation
	Step 1: Form a local cache of particles
	Step 2: Find pairs and pack them in a 2nd cache
	Step 3: Process all pairs in the 2nd cache
	Vectorization results
	Conclusions
	More on SWIFT
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	More on SWIFT
	Conclusion and Outlook
	Slide 58

