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Introduction
The problem to solve
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What we do and how we do it

 Astronomy / Cosmology simulations of the 
formation of the Universe and galaxy 
evolution.

 EAGLE project1: 48 days of computing on 
4096 cores.  >500 TBytes of data products 
(post-processed data is public!). Most cited 
astronomy paper of 2015 (out of >26000).

 Simulations of gravity and hydrodynamic 
forces with a spatial dynamic range spanning 6 
orders of magnitude running for 
>2M time-steps.

One simulated galaxy out of the 
EAGLE virtual universe.

1) www.eaglesim.org

http://www.eaglesim.org/
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What we do and how we do it

• Solve coupled equations of gravity and 
hydrodynamics using SPH (Smoothed Particle 
Hydrodynamics). 

• Consider the interaction between gas and 
stars/black holes as part of a large and 
complex subgrid model.

• Evolve multiple matter species at the same 
time.

• Large density imbalances develop over time:
→ Difficult to load-balance.

One simulated galaxy out of the 
EAGLE virtual universe.



SPH scheme: The problem to solve

For a set of N (>109) particles, we want to exchange hydrodynamical forces 
between all neighbouring particles within a given (time and space variable) 
search radius. Large density imbalances develop over time.

Challenges:
 Particles are unstructured in space, large density variations.
 Particles will move and the neighbour list of each particle evolves over 

time.
 Interaction between two particles is computationally cheap 

(low flop/byte ratio).
 Individual time-steps for each particle. 
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SPH scheme: The traditional method

The “industry standard” cosmological code 

is GADGET (Springel et al.1999, Springel 2005).

 MPI-only code.

 Neighbour search based on oct-tree.

 Oct-tree implies “random” memory walks

– Lack of predictability.

– Nearly impossible to vectorize.

– Very hard to load-balance.
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SPH scheme: The traditional method
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for (int i=0; i<N; ++i) {   // loop over all particles

struct part *pi = &parts[i];

list = tree_get_neighbours(pi->position, pi->search_radius); // get a list of ngbs

for(int j=0; j < N_ngb; ++j) {  // loop over ngbs

const struct part *pj = &parts[list[j]]; 

INTERACT(pi, pj); 
} }



Need to make things regular and 
predictable:

 Neighbour search is performed via the 
use of an adaptive grid constructed 
recursively until we get ~500 particles 
per cell.

 Cell spatial size matches search radius.

 Particles interact only with partners in 
their own cell or one of the 26 
neighbouring cells

SPH scheme: The SWIFT way
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Retain the large fluctuations in 
density by splitting cells:

 If cells have ~400 particles they fit in the 
L2 caches. 

 Makes the problem very local and fine-
grained.

SPH scheme: The SWIFT way
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SPH scheme: The SWIFT way
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells (>1 000 000)
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;  // Around 400-500
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj);   // symmetric interaction
} } } }



SPH scheme: The SWIFT way
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for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells
for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];
struct part *pj = &parts[j];

INTERACT(pi, pj);   // symmetric interaction
} } } }

Vectorization

Threads + MPI



Single-node parallelisation
Task-based parallelism
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SPH scheme: Single-node parallelization

No need to process the cell pairs in 
any specific order:

 -> No need to enforce and order.

 -> Only need to make sure we don’t 
process pairs that use the same cell.

 -> Pairs could have vastly different 
runtimes since they can have very 
different particle numbers.
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SPH scheme: Single-node parallelization

No need to process the cell pairs in 
any specific order: 

 -> No need to enforce and order.

 -> Only need to make sure we don’t 
process pairs that use the same cell.

 -> Pairs could have vastly different 
runtimes since they can have very 
different particle numbers.
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We need dynamic 
scheduling !



Task-base parallelism for SPH

 For two cells, we have the task graph shown on the
right.

 Arrows depict dependencies, dashed lines show 
conflict.

 Ghost tasks are used to link tasks and reduce
the number of dependencies.
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SPH scheme: Single node parallel performance
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Task graph for one time-step. 
Colours correspond to different types of task. Almost perfect load-balancing is achieved on 16 cores.



 Realistic problem (video from start of the talk)

 Same accuracy.

 Same hardware.

 Same compiler.

 Same solution.

More than 30x speed-up vs. “industry 
standard” Gadget code.

Single node performance vs. Gadget
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35.5x



Multi-node parallelisation
Asynchronous MPI communications
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• A given rank will need the cells directly 
adjacent to it to interact with its particles.

• Instead of sending all the “halo” cells at 
once between the computation steps, we 
send each cell individually using MPI 
asynchronous communication primitives. 

• Sending/receiving data is just another task 
type, and can be executed in parallel with 
the rest of the computation.

• Once the data has arrived, the scheduler 
unlocks the tasks that needed the data.

• No global lock or barrier !

Asynchronous communications as tasks



Asynchronous communications as tasks

Communication tasks do not perform any computation:
 Call MPI_Isend() / MPI_Irecv() when enqueued.
 Dependencies are released when MPI_Test() says the data has been 

sent/received.

Not all MPI implementations fully support the MPI v3.0 standard.
 Uncovered several bugs in different implementations providing 
MPI_THREAD_MULTIPLE.

 e.g.:  - OpenMPI 1.x – 2.0  crashes when running on Infiniband.
  - Intel-MPI 2017 crashes when running on OmniPath.

Most experienced MPI users will advise against creating so many send/recv.
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Asynchronous communications as tasks
 Message size is 5-10kB.

 On 32 ranks with 16M particles in 250’000 
cells, we get ~58’000 point-to-point 
messages per time-step!

 Relies on MPI_THREAD_MULTIPLE as all 
the local threads can emit sends and 
receives.

 Spreads the load on the network over the 
whole time-step. 
→ More efficient use of the network!
→ Not limited by bandwidth.
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Intel ITAC output from 2x36-cores Broadwell nodes. Every black 
line is a communication between two threads (blue bands).



Asynchronous communications as tasks
 Message size is 5-10kB.

 On 32 ranks with 16M particles in 250’000 
cells, we get ~58’000 point-to-point 
messages per time-step!

 Relies on MPI_THREAD_MULTIPLE as all 
the local threads can emit sends and 
receives.

 Spreads the load on the network over the 
whole time-step. 
→ More efficient use of the network!
→ Not limited by bandwidth.
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Intel ITAC output from 2x36-cores Broadwell nodes. 
>10k point-to-point communications are reported over 
this time-step.



Domain decomposition
 For each task we compute the amount of work 

(=runtime) required.

 We can build a graph in which the simulation data 
are nodes and the tasks operation on the data are 
hyperedges.

 The task graph is split to balance the work (not the 
data!) using the METIS library.

 Tasks spanning the partition are computed on both 
sides, and the data they use needs to be 
sent/received between ranks.

 Send and receive tasks and their dependencies 
are generated automatically.
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Domain decomposition

Domain geometry can be complex.
 No regular grid pattern.
 No space-filling curve order.
 Good load-balancing by construction.

Domain shapes and computational costs 
evolve over the course of the simulation.

 Periodically update the graph partitioning.
 May lead to large (unnecessary?) re-

shuffling of the data across the whole 
machine.
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Particles coloured by the domain they belong to for a 
cosmological simulation. 
The domains are un-structured.



Multiple node parallel performance
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Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8 
nodes of 12 cores.



Scaling results: SuperMUC

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of 
RAM per node.
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Schaller+2016, PASC



Scaling results: Realistic case (multi-dt)
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Scaling results: Weak scaling
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Scaling results: “strong scaling” within node
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 Almost perfect strong-scaling performance on a 
cluster of many-core nodes when increasing the 
number of threads per node (fixed #MPI ranks).

 Clear benefit of task-based parallelism and 
asynchronous communication.

 Future-proof! As the thread/core count per node 
increases, so does the code performance.

 Why? 
→ Because we don’t rely on MPI for intra-node 
communications.



SIMD parallelisation
Explicit vectorization using intrinsics
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Explicit vectorization of the core routines.

Thanks to our task-based parallel framework:

 No need to worry about MPI

 No need to worry about threading or race conditions

 Full problem holds in L2 cache.
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Sorted interactions (pseudo-Verlet list)
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Sorted interactions with local cache
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Sorted interactions with local cache
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Conclusions
And take-away messages
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More on SWIFT

Completely open-source software including all the examples and scripts.

~40’000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadget code on the same 
setup and same architecture. Thanks to:

 Better algorithms
 Better parallelisation strategy
 Better domain decomposition strategy

Fully compatible with Gadget in terms of input and output files. 

61



More on SWIFT
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Gravity solved using a FMM and mesh for 
periodic and long-range forces.

Gravity and hydrodynamics are solved at the 
same time on the same particles as 
different properties are updated. No need 
for an explicit lock.

I/O done using the (parallel) HDF5 library, 
currently working on a continuous 
asynchronous approach.

Task-based parallelism allows for very simple 
code within tasks.
→ Very easy to extend with new physics 
without worrying about parallelism.



Conclusion and Outlook

Collaboration between Computer scientists and physicists works!

Successfully decomposed the parallelization in three separate problems.

Developed usable simulation software using state-of-the-art paradigms.

Great strong-scaling results up to >100’000 cores. 
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