
The scalability challenge
of extreme dynamic range

problems
Josh Borrow, Matthieu Schaller + SWIFT team

Leiden Observatory, Netherlands

SWIFT 101

● Open-source particle-based hydro + gravity code (C99)
designed for cosmology and galaxy formation.

● In brief:
○ Task-based parallelism inside the nodes.
○ Asynchronous MPI in-between.
○ Domain decomposition of the task graph not of the data.
○ Vector instructions for the core routines.
○ Neighbour search using recursive grid and pseudo-Verlet list.
○ Runs up to >1010 particles performed.

SPHERIC Trondheim
arXiv:1606.02738

Context: Cosmological simulations

EAGLE project:

● SPH (no Riemann solver)
● Coupled to gravity
● 3 × 106 time-steps
● 3.5 × 109 particles
● 48 days on 4000 cores
● Most cited astro paper in

2015

http://www.youtube.com/watch?v=7KmbQ02JE3g

Our target cosmological simulation

Setup:

● 200 × 109 particles.
● 3 × 106 time-steps.

System:

● 100’000 cores

Typical code:

● 10-4 s / update / core

Our target cosmological simulation

Setup:

● 200 × 109 particles.
● 3 × 106 time-steps.

System:

● 100’000 cores

Typical code:

● 10-4 s / update / core

19 years of
wall-clock time !!

A very large dynamic range

Time integration operator splitting

Classic leap-frog:

K(ᵂt/2) × D(ᵂt) × K(ᵂ/2)

Splitting the “drift”:

K(ᵂt/2) × D(ᵂt/2n) ⋯ D(ᵂt/2n) × K(ᵂ/2)

Time integration operator splitting

Algorithm:

● Compute “kick” (accelerations) only for the particles in
the current time bin.

● Apply the “drift” (move) to all the particles.

Nothing new. Applied everywhere especially in gravity codes.

Efficiency

Efficiency

Efficiency

Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that?

Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that? No! Only the particles that are neighbours
of an active particle need to be moved forward.

-> Tree-walk “activating” the tasks in parts of the domain that need to. Followed
by the actual calculation.

Efficiency

Efficiency

Parallel efficiency

Parallel efficiency has dropped.

-> You computer scientist friend won’t be happy.

But time-to-solution has decreased a lot.

-> Your scientist friend will be happy.

Not enough stuff to do

How do we load-balance this
efficiently?

Smallest time-step problem

● Clearly impossible to distribute N particles effectively on
M nodes if N < M.

● Solution is then to make these steps as cheap as possible
and cut all overheads.

● The main one is MPI. Let’s cut that.

Classic domain decomposition

Space-filling curve:

● Very common.
● Balances the data

(mostly).
● Makes sure the average

run time is low.

Domain Decomposition - visually

● Each MPI rank gets a
number of cells.

● How do we distribute
these cells among
nodes efficiently?

● SWIFT uses task-based parallelism.
● Let’s decompose the task-graph.
● Give heavy weights to the communication tasks.
● Ask graph decomposition library to solve the problem.

SWIFT strategy

A diagnostic

400 × 106 particles

4 nodes

16 cores/node

Weak-scaling results

4000x

1.25x

Conclusions

● Local time-stepping is crucial to extract performance.

● Scaling is then not the relevant metric.
Time-to-solution is.

● Load-balancing must:
○ Decompose the work not the data.
○ Avoid MPI on the smallest steps.
○ Task-based parallelism offers ideal framework for that.

SPH With Interleaved Fine-grained Tasking

www.swiftsim.com

@SwiftSimulation

http://www.swiftsim.com

