The scalability challenge
of extreme dynamic range
problems

Josh Borrow, Matthieu Schaller + SWIFT team

Leiden Observatory, Netherlands

SWIFT 101

e Open-source particle-based hydro + gravity code (C99)
designed for cosmology and galaxy formation.
e In brief:

©)

O O O O O

Task-based parallelism inside the nodes.

Asynchronous MPI in-between.

Domain decomposition of the task graph not of the data.
Vector instructions for the core routines.

Neighbour search using recursive grid and pseudo-Verlet list.

Runs up to >10"° particles performed.
SPHERIC Trondheim
arXiv:1606.02738

Context: Cosmological simulations

EAGLE project:

The EAGLE simulations:
E AU TR AR ASUE MSLY LECALANES AMLCIEIR L NYIRcsme Y s

SPH (no Riemann solver)
Coupled to gravity

3 x 10° time-steps

3.5 x 10° particles

48 days on 4000 cores
Most cited astro paper in
2015

http://www.youtube.com/watch?v=7KmbQ02JE3g

Our target cosmological simulation

Setup: Typical code:

e 200 x 10° particles. e 10%s/update/ core
e 3 x 10°time-steps.

System:

e 100°000 cores

Our target cosmological simulation

Setup: Typical code:

e 200 x 10° particles. e 10%s/update/ core
e 3 x 10°time-steps.

System:
y - 19 years of

e 100°000 cores wall-clock time !!

A very large dynamic range

Density (g cm™3)
10—31 10—29 10—27 10—25 10—23 10—21

102 4 <« 1x 10! >
17
10 106
F3)l| —~ 1016
10 .?m 10 : 105
P - o
g ‘ ,EJ, 1015 ? 104 g
< 10° - ~ Timestep 5 3 o
£ ~— Densi ¥ 14] -
& v & 107 4 10° £
: - E
10-° - 42 1013 3 e 102
- 1012] - 1
101 | 1 10
= 3 x 10* >
LL I B B B L) S R B LA LA B B B AL B B 1011 T T T T 114
103 104 10° 106 107 10-30 1027 1024 1021

Timestep (years) Density (g cm™)

Time integration operator splitting

Kick
¥ Inactive Tree

Kick

Classic leap-frog:

K(At/2) x D(At) x K(A/2)

Kick
]

Inactive Tree

Very Active

Time

Splitting the “drift”:
K(At/2) x D(At/2") - D(At/2") x K(A/2)

Time integration operator splitting

Algorithm:

e Compute “kick” (accelerations) only for the particles in
the current time bin.

e Apply the “drift” (move) to all the particles.

Nothing new. Applied everywhere especially in gravity codes.

Efficiency

o
o
)
1
§ 1
b
=
2 100
S
£ 1071
a Fixed-dt
IxXeda-
1072
T T T .
100 101 102

Threads

Efficiency

m"’ 102
o
=k
1
.5 10
b
=
o 10°
2 s
£ 1071 ,
= Fixed-dt
10-24 — Drift All
LI | > | LI AL | T T LA AL | LI
100 101 102

Threads

Efficiency

Mol
o
=
1
.5 10
)
=
o 10°
S "o
Q 101 Fixed-dt
= —— Drift Al
10-24 = Gadget-2
LI | T LI AL | T T LA AL | T
10° 10" 102

Threads

Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that?

Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that? No! Only the particles that are neighbours
of an active particle need to be moved forward.

-> Tree-walk “activating” the tasks in parts of the domain that need to. Followed
by the actual calculation.

Efficiency

Mol
o
c

1
§ 10
et
=
g 10"
2 =
Q 101 Fixed-dt
= —— Drift Al

10-24 = SWIFT Scheme

—rr ——————rr
101 102
Threads

o |
10°

Efficiency

m; 102
= 1
1

& U 107x
L=
2 10°
2 e
Q 101 Fixed-dt
= —— Drift Al

10-24 = SWIFT Scheme

—rr ——————rr
101 102
Threads

o |
10°

Parallel efficiency

Parallel efficiency has dropped.

-> You computer scientist friend won't be happy.

But time-to-solution has decreased a lot.

-> Your scientist friend will be happy.

Not enough stuff to do

» 2
o 10
S 1
p 1
5 10
et
= o 1'% 7ass8
O
a 10 37244
o 18622
b SeaddF 9311, o= -
QE) 10-1 lele = 2327 1163 581 290
= - Drift All
10-24 = SWIFT Scheme

—rr ——————rr
101 102
Threads

o |
10°

How do we load-balance this
efficiently?

Smallest time-step problem

e Clearly impossible to distribute N particles effectively on
M nodes if N < M.

e Solution is then to make these steps as cheap as possible
and cut all overheads.

e The main one is MPI. Let’s cut that.

Classic domain decomposition

R R

..............

...........

desidsiassirrandiosf s

e sa s aisiaia g uh Eapimas

Space-filling curve:

e Very common.

e Balances the data
(mostly).

e Makes sure the average
run time is low.

Domain Decomposition - visually

e Each MPI rank gets a
number of cells.

e How do we distribute
these cells among
nodes efficiently?

SWIFT strategy

SWIFT uses task-based parallelism.

Let's decompose the task-graph.

Give heavy weights to the communication tasks.

Ask graph decomposition library to solve the problem.

Density Force

Ghost in Ghost out End Force

A diagnostic

« METIS Grid -

Rebuild Steps

104 E

] y / 400 x 106 particles
103 E
n 4 nodes

102 4 S
= o 16 cores/node

Wallclock time for step (ms)

101 3 AR x*

L R ALY ML S AL LR L RS L R R L ®
10* 40* 40* 10* 10° 10%* 107 10°
Number of updates

LRERLLL |

Weak-scaling results

7 2.5 - 512 i
e 8 64 !
8 >0 1 B / T1.25x
| e T : - :
O
—g 1'5_7x10‘~‘ 5x 10’ 4 x 108 3 x 10° 3 x 1010
(V)]
2 1.0-
()
k= a
= U.D 7
4000x >
O-O 2R A | ! LA B AR | T T TrTTTTy T T T rrrrrg
100 10! 102 103

Threads

Conclusions

e Local time-stepping is crucial to extract performance.

e Scaling is then not the relevant metric.
Time-to-solution is.

e Load-balancing must:

o Decompose the work not the data.

o Avoid MPI on the smallest steps.
o Task-based parallelism offers ideal framework for that.

/1| /!) __/
AV B A AV VY AV S A |
A I VAN VAV Y aw Ve A
VAR A P A (R — /1

SPH With Interleaved Fine-grained Tasking

www.swiftsim.com

@SwiftSimulation

http://www.swiftsim.com

106 <
) i
£ 105 4
4_, 3
o]
Q
o
%)}
()] 4 |
2 10
-
Q
> 1
© 103 4
2]
£
3 —
(@)

102

1 Grid
[METIS
LELELELS) | L} L2 B BLOL= 3] | X LI PR L | X LR LI LD |
10! 102 103 104

Wallclock time for step (ms)

