/| [/ ___[_ __/
__ NV /717 /777 7_ [/
Y AA B VA VA A A A A |

[__M__/___/_/ /_/

Using Task-Based Parallelism, Asynchronous MPI and Dynamic Workload-
Based Domain Decomposition to Achieve Near-Perfect Load-Balancing for
Particle-Based Hydrodynamics and Gravity

Matthieu Schaller

Leiden Observatory, Netherlands
with

Stefan Arridge, Josh Borrow, Richard Bower, Aidan Chalk (Hartree Centre), Peter Draper,
Pedro Gonnet (Google), Loic Hausamman (EPFL), Yves Revaz (EPFL), Bert
Vandenbroucke (St. Andrews), James Willis

This work is a collaboration between 2 departments at Durham University (UK):
" The Institute for Computational Cosmology,
" The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of St-Andrews
(UK), Dublin (Ireland), Leiden (Netherlands) Lausanne (Switzerland) as well
as the DIRAC and CSCS software teams.

This research is partly funded by an Intel IPCC since January 2015.

What we do and how we do it

" Astronomy / Cosmology simulations of the
formation of the Universe and galaxy
evolution.

" EAGLE project’. 48 days of computing on
4096 cores. >500 TBytes of data products
(post-processed data is public!). Most cited
astronomy paper of 2015 (out of >26000).

" Simulations of gravity and hydrodynamic

One simulated galaxy out of the

forces with a spatial dynamic range spanning 6 EAGLE virtual universe.
orders of magnitude running for
>2M time-steps. 1) www.eaglesim.org

http://www.eaglesim.org/

EAGLE: Evolution and Assembly of GalLaxies and their Environments
The evolution of intergalactic gas. Colour encodes temperature

z = 14.0
&5 0.3 Gyr Visualisation by
L = 25.0 cMpc Jim Geach & Rob Crain

What we do and how we do it

* Solve coupled equations of gravity and
hydrodynamics using SPH (Smoothed Particle
Hydrodynamics).

* Consider the interaction between gas and
stars/black holes as part of a large and
complex subgrid model.

* Evolve multiple matter species at the same
time.

One simulated galaxy out of the
EAGLE virtual universe.

* Large density imbalances develop over time:
— Difficult to load-balance.

SPH scheme: The problem to solve

For a set of N (>10°) particles, we want to exchange hydrodynamical forces
between all neighbouring particles within a given (time and space variable)
search radius. Large density imbalances develop over time.

Challenges:
" Particles are unstructured in space, large density variations.
" Particles will move and the neighbour list of each particle evolves over
time.
" Interaction between two particles is computationally cheap
(low flop/byte ratio).
" Individual time-steps for each particle.

SPH scheme: The traditional method

The “industry standard” cosmological code

is GADGET (Springel et al.1999, Springel 2005).
" MPI-only code.

" Neighbour search based on oct-tree.

" QOct-tree implies “random” memory walks
- Lack of predictability.

- Nearly impossible to vectorize.

- Very hard to load-balance.

o

) o
000 o

boO OQO 002 © 1600 OOO Q
ol ° [SLol ol e |o
° |o °[doPdelBfe’] ©| ©

0
o |o° 0o . 20 ©
o)
de| © |o [Dleo
J° o 2| o [efog o

0000

SPH scheme: The traditional method

for (int i=0; i<N; ++i) { // loop over all particles
struct part *pi = &parts[i];
list = tree_get neighbours (pi->position, pi->search radius); // get a list of ngbs
for(int j=0; j < N_ngb; ++j) { // loop over ngbs
const struct part *pj = &parts[list[j]];

INTERACT (pi, pj):;
} o}

SPH scheme: The SWIFT way

: o

Need to make things regular and g
predictable: O i

¢ o

" Neighbour search is performed via the o 6_
use of an adaptive grid constructed :
recursively until we get ~500 particles @ i
percell. L - ?

" Cell spatial size matches search radius.)]
" Particles interact only with partnersin ~~ ~——--- .,,
their own cell or one of the 26 !
neighbouring cells o

SPH scheme: The SWIFT way

Retain the large fluctuations in
density by splitting cells:

" If cells have ~400 particles they fit in the
L2 caches.

" Makes the problem very local and fine-
grained.

SPH scheme: The SWIFT way

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells (>1 000 000)
for (int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count i = cells[ci].count; // Around 400-500
const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++3j) {

struct part *pi = &parts[i];
&parts[j];

struct part *pj

INTERACT (pi, p3J): // symmetric interaction

b}

SPH scheme: The SWIFT way

Threads + MPI

for (int ci=0; ci < nr_cells; ++ci) {
for (int cj=0; cj < 27; ++cj) { t

A

Vectorization
for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++3j) {

INTERACT (pi, pj):;

b}

Single-node parallelisation

Task-based parallelism

SPH scheme: Single-node parallelization

. ® | | |
No need to process the cell pairs in | P 0 . ©
P i . I . [1 . I
any specific order: : : | :
"""" i B) N A
" ->No need to enforce and order. .: O i .i ©
" -> Only need to make sure we don’t Q_____ ;_ ______ : : N
process pairs that use the same cell. .
® -> Pairs could have vastly different P i o
runtimes since they can havevery | @ .
different particle numbers. o i i
. @
———————— o e
© o |
© | e e : ©

SPH scheme: Single-node parallelization

. ® | | |
No need to process the cell pairs in I~ o | . ©
any specific order: © | - O
"""" i B) N A
" ->No need to enforce and order. .: O i .i ©
" -> Only need to make sure we don’t Q_____ ;_ ______ : : N
process pairs that use the same cell. .
® -> Pairs could have vastly different P i o
runtimes since they can havevery | @ .
different particle numbers. o i i
________ S
We need dynamic o °o
scheduling ! © | o | e | ©

Task-base parallelism for SPH

" For two cells, we have the task graph shown on the
right.

" Arrows depict dependencies, dashed lines show
conflict.

" Ghost tasks are used to link tasks and reduce
the number of dependencies.

integrator

force

ghost

density

sort

sort

SPH scheme: Single node parallel performance

19

ﬁ: == sUb_pair/density - self/density kickl

16 4 pair/density = drift_part — kick2
15 ¢ === sub self/density sort — timestep
SO | 118U W T AN 10010 A1

1o 4+ AL OO LT ONWONAT]B ||||||||||||||||||||||||||||||||||||||| ML IR T ||||I

vg 4 IR LE DT 0 R | I RE 0 A AT Y T VAR R s [T T

OO | AU OO TR AT 1 A N TNV NN
OO 1T I IO TAEE T T R TR O T TN
g | IUEOTIE OO 1 0 SN 0 W w10 |II|II|I|I|I||I||||I | 11K
74+ RUICIIR L TR IO M RERY TR I|II|||I||I:
S I 1 O RORMLREIEARR) 1] T II|II I|I |I|I|||I||I|||I||| ||III||I|I|I |II||||II
O A A RIEL TR AT L
2 v L | T I|||I|I|I|III|II||I||| I||II|I ||||II| |II||||||I I||II| ||I|II|I|||| I|I|
LN T S o 1 AT O AL M
L WA |||||||||I|||| |IIII|I- II ||||II|I II I|| IIII || |III || |I|I|I|||I |I+

| | IIL LA |
AL 10T AT R ||| I|I|II|I NIRRT ||| |||I| |II || I|I I| |III|I 0] |II||| I! |III||||||||M

i

i

I

| .

0 lDDU 2000 3000
Wall clock time Imsl

Thread 1D
o

Task graph for one time-step.
Colours correspond to different types of task. Almost perfect load-balancing is achieved on 16 cores.

\ 19

Single node performance vs. Gadget

= Same accuracy.

Same hardware.

Same compiler.

Same solution.

More than 30x speed-up vs. “industry

standard” Gadget code.

Realistic problem (video from start of the talk)

Wallclock time to solution [ms]

105 !

108}

—_
o
&S

—
e}
=N
——T

" Scaling on EAGLE-3763

m— (Gadget-2 —2.0.7
= SWIFT -0.7.0 |

16

109

10!
Threads

._
<

H
<

S
o
~ Wallclock time to solution [hr]

WIVIIE node parallelisation

Asynchronous communications as tasks

* Agiven rank will need the cells directly
adjacent to it to interact with its particles.

integrator

* Instead of sending all the “halo” cells at
once between the computation steps, we force
send each cell individually using MPI
asynchronous communication primitives.

ghost

* Sending/receiving data is just another task
type, and can be executed in parallel with
the rest of the computation. density

* Once the data has arrived, the scheduler
unlocks the tasks that needed the data.

sort

* No global lock or barrier !

Asynchronous communications as tasks

Communication tasks do not perform any computation:
" CallMPI_1Isend() /MPI_Irecv () when enqueued.
" Dependencies are released when MPI_Test () says the data has been
sent/received.

Not all MPI implementations fully support the MPI v3.0 standard.
" Uncovered several bugs in different implementations providing
MPI_THREAD MULTIPLE.

" e.g.: -OpenMPI 1.x—2.0 crashes when running on Infiniband.
- Intel-MPI 2017 crashes when running on OmniPath.

Most experienced MPI users will advise against creating so many send/recv.

Asynchronous communications as tasks

wrowp [WPl expandean() & Y | *

" Message size is 5-10kB.

= On 32 ranks with 16M particles in 250°'000 [e e
cells, we get ~58'000 point-to-point fors | — e e

PO T6

messages per time-step!

" Relieson MPI_THREAD_MULTIPLE asall [}

the local threads can emit sends and e
receives. e

PLT7
P1T8

* Spreads the load on the network over the
whole time-step.
— More efficient use of the network!

Tself Tself THotal #calls Tself /call

4 New Group
Group Application 67.1465 s NN 72.0136 s 19958792 3.36426e-6 s

— Not limited by bandwidth. e T R A

3

TRACE_OFF 142.12-3 s 142.12e-3 s 1 142.12e-3 s

- MPI_Test 1.15695 s | 1.15695 s 908674 1.27322e-6 s

MPI_Isend 32.692e-3 s 32.692e-3 s 10324 3.1666e-6 s

MPI_Irecv 42.98e-3 s 42.98e-3 s 10360 4.14865e-6 s
3

MPI_Allreduce 44.139e-3 s 44.139e-3 s 2 22.0695e-3 s

231183 5

Intel ITAC output from 2x36-cores Broadwell nodes. Every black
line is a communication between two threads (blue bands).

\26

Asynchronous communications as tasks

* Message size is 5-10kB.

* On 32 ranks with 16M particles in 250’000

cells, we get ~58'000 point-to-point fNF‘LP:‘ T
messages per tlme_Step! Name TSelf Tself TTotal #Calls Tself /call
4 New Group

®= Relies on MPT THREAD MULTIPLE as all - Group Application 67.1465 s [N 72.0136 s 19958792 3.36426e—6 s
— — -~ AUTO_FLUSH 3.44824 s 3.44824 s 8 431.03e-3 s
the local threads can emit sends and - TRACE_OFF 142.12e-3 s 142.12e-3 s 1 142.12e-3 s
. - MPI_Test 1.15695 s | 1.15695 s 908674 1.27322e-6 s
receives. - MPI_Isend 32.692e-3 s 32.692e-3 s 10324 3.1666e—6 s
MPI Irecv 42.98e-3 s 42.98e-3 s 10360 4.14865e-6 s
" MPI_allreduce 44.139e-3 s 44.139e-3 s 2 22.0695e-3 s

= Spreads the load on the network over the
whole time-step.

— More efficient use of the network!
—» Not limited by bandwidth. Intel ITAC output from 2x36-cores Broadwell nodes.

>10k point-to-point communications are reported over
this time-step.

Domain decomposition

* For each task we compute the amount of work
(=runtime) required.

* We can build a graph in which the simulation data
are nodes and the tasks operation on the data are
hyperedges.

* The task graph is split to balance the work (not the
data!) using the METIS library.

* Tasks spanning the partition are computed on both
sides, and the data they use needs to be
sent/received between ranks.

* Send and receive tasks and their dependencies
are generated automatically.

Domain decomposition

Domain geometry can be complex.
" No regular grid pattern.
* No space-filling curve order.
* Good load-balancing by construction.

Domain shapes and computational costs
evolve over the course of the simulation.

" Periodically update the graph partitioning.

* May lead to large (unnecessary?) re-
shuffling of the data across the whole
machine.

Particles coloured by the domain they belong to for a
cosmological simulation.
The domains are un-structured.

‘29

Multiple node parallel performance

SWIFT tasks

0 10 20 30 40 50 60 70 80
time (ms)

Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8
nodes of 12 cores.

\30

Scaling results: SuperMUC

SWIFT Strong scaling on SuperMUC with 512M particles from 16 to 2048 nodes and 16 threads per node

T T T T 1.2 T T T T
2000 | |
IOF ~ e — — — — — — — — — — _ ——n . — — — — — — —]
g\v 3 DN
>~ § u @ qi} S_m-’ § § %)
1500 |- 1 208} o s g 5 S o 3 5 T
g & N < X © = S o
5 2 8 8§ g g ® & g
o] = Lo — F 2
3 m 0.6 | 3 .
21000 |- 1 =
A =
[av]
504 i
[a W)
500 F .
02} |
0 ! | | 1 OO N N N T | L N N N TR | L N N L PRI |
0 500 1000 1500 2000 10! 102 10° 10%
Nodes

Nodes
System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of
RAM per node

\32

Scaling results Reallstlc case (multi-dt)

EScaImg on EAGLE 3763
% = Gadget-2
i = SWIFT v0.7.0

[a—
<
[s.2]

/ EAGLE '—")'éil ;

[E—
(]
-

[a—y
(==}
[=))

Wallclock time to solution [ms]
= Wallclock time to solution [hr]

[a—y
(=}
n
[a—y
(==}
[l
[a—y
<
—
-
~
g
)
=l
S
[a—y
(=}
[RS8
[a—y
<
[#'8]

Scaling results: Weak scaling

3.0

@® Strong scaling particle load

2.5 - 4096

512 .
T‘D 1/ :
-:l 2.0] : i
c

S

i

g 159 ;410 5 x 107 4 x 108 3 x 10° 3 x 1010
wn

o

s}

o 1.0 A

£

l—

054 7x 106 particles per core over 8197 steps.
Sandy-Bridge (16 cores per node, 1 MPI rank per socket).
EAGLE shapshot at z=0.1.

100 101 102 103

_ Threads _n

Scaling results: “strong scaling” within node

* Almost perfect strong-scaling performance on a
cluster of many-core nodes when increasing the
number of threads per node (fixed #MPI ranks).

* Clear benefit of task-based parallelism and
asynchronous communication.

* Future-proof! As the thread/core count per node
increases, so does the code performance.

* Why?
— Because we don’t rely on MPI for intra-node
communications.

30

25

Speedup

Multi — threading

\

10 15 20

Threads per node

25

30

SIMD parallellsatlon

Explicit vectorizatio

Explicit vectorization of the core routines.

Thanks to our task-based parallel framework:
" No need to worry about MPI

" No need to worry about threading or race conditions

" Full problem holds in L2 cache. M(a) - o - .
@) O @) o O o
o O 7 o ’ -
@ o 5 o o
0} @) o S | e
@) © o @.\‘ @) 9) . ° Q o
o o @ © o ©
© o © o 0.0 S
Y

Sorted interactions (pseudo-Verlet list)
o |(b) 0

(a) (b)
oonY
- 0--0----0---C0 OO 0-{@-@-@--00-0-0O--0--O~
(a)|, (b) (D)
P; |\Pj Pji1

Sorted interactions with local cache

Particles X | Y, |z hy| [X |y, |z |h
(A0S)

Particles x: | x | x | x | x
(SoA)

Sorted interactions with local cache

(a) (b)
| |
- O--O---0---00-O--O--8-1 00000000 0- O--O--O»
(@)| () (b)
p; P Pjta
. 15 Vector hg”d Vector
a b b b b b b b b b
p M p s) < 0

e

/cosma5/data/dp004/dc-will2/SWIFT/drift_vec/swiftsim/examples/SedovBlast_3D/drift_roofline - Intel Advisor (on cosma-f.cosma)

File View Help
h D Pe ST AH & @
Welcome €000 X

El Elapsed time: 69.20s El O Vectorized Not Vectorized .FIIIER: LULCL VIR runner_doiact_vec.c All Threads ~
| @ summary % Survey & Roofline £ Refinement Reports

v /& Some target modules do not contain debug information
Suggestion: enable debug information for relevant modules.

INTEL ADVISOR 2017

" performance (GFLOPS) L3 § [Use Single-Threaded Roofs @
3
] > 1 Peak; 5FLOF
[F 7 ; F ’
g O o . o ; 2 Vect 1 [;
100 | @
o] e o. . runner_doself2_force_vec runner_doiact_vec.c:836|
° - Performance: 147.82 GFLOPS
L1 Arithmetic Intensity: 0.49 FLOP/Byte
Self Elapsed Time: 1.840 s
10 Total Time: 25.279 s
® []
N ‘ . s o
' 4
loops A
0.14
1 £
0.01) %
0.01 0.1 1
Self Elapsed Time: 3.023 s Total Time: 91.423 s Arithmetic Intensity (FLOP/Byte)
s.ourcelmpnmn||:nm ,_-.I y | Rec & Why No Vectorization?

LATE

60

More on SWIFT

Completely open-source software including all the examples and scripts.
~40°000 lines of C code without fancy language extensions.

More than 20x faster than the de-facto standard Gadgetcode on the same
setup and same architecture. Thanks to:
" Better algorithms
" Better parallelisation strategy
" Better domain decomposition strategy

Fully compatible with Gadgetin terms of input and output files.

More on SWIFT

Gravity solved using a FMM and mesh for
periodic and long-range forces.

Gravity and hydrodynamics are solved at the
same time on the same particles as
different properties are updated. No need
for an explicit lock.

I/O done using the (parallel) HDF5 library,
currently working on a continuous
asynchronous approach.

Task-based parallelism allows for very simple
code within tasks.
— Very easy to extend with new physics
without worrying about parallelism.

Conclusion and Outlook

Collaboration between Computer scientists and physicists works!
Successfully decomposed the parallelization in three separate problems.

Developed usable simulation software using state-of-the-art paradigms.

Great strong-scaling results up to >100°000 cores.

	Slide 1
	Slide 2
	Introduction
	What we do and how we do it
	Slide 5
	What we do and how we do it
	SPH scheme: The problem to solve
	SPH scheme: The traditional method
	SPH scheme: The traditional method
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	SPH scheme: The SWIFT way
	Single-node parallelisation
	SPH scheme: Single-node parallelization
	SPH scheme: Single-node parallelization
	Task-base parallelism for SPH
	SPH scheme: Single node parallel performance
	Single node performance vs. Gadget
	Multi-node parallelisation
	Asynchronous communications as tasks
	Asynchronous communications as tasks
	Asynchronous communications as tasks
	Asynchronous communications as tasks
	Domain decomposition
	Domain decomposition
	Multiple node parallel performance
	Scaling results: SuperMUC (#22 in Top500)
	Slide 34
	Slide 35
	Scaling results
	SIMD parallelisation
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 60
	Slide 61
	More on SWIFT
	Conclusion and Outlook
	Slide 64

