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SWIFT 101

e Open-source particle-based hydro + gravity code (C99)
designed for cosmology and galaxy formation.
e In brief:
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Task-based parallelism inside the nodes.

Asynchronous MPI in-between.

Domain decomposition of the task graph not of the data.
Vector instructions for the core routines.

Neighbour search using recursive grid and pseudo-Verlet list.

Runs up to >10"° particles performed.
SPHERIC Trondheim
arXiv:1606.02738



Context: Cosmological simulations

EAGLE project:

The EAGLE simulations:
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SPH (no Riemann solver)
Coupled to gravity

3 x 10° time-steps

3.5 x 10° particles

48 days on 4000 cores
Most cited astro paper in
2015



http://www.youtube.com/watch?v=7KmbQ02JE3g

Our target cosmological simulation

Setup: Typical code:

e 200 x 10° particles. e 10%s/update/ core
e 3 x 10°time-steps.

System:

e 100°000 cores



Our target cosmological simulation

Setup: Typical code:

e 200 x 10° particles. e 10%s/update/ core
e 3 x 10°time-steps.

System:
y - 19 years of

e 100°000 cores wall-clock time !!



A very large dynamic range
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Time integration operator splitting

Kick
¥ Inactive Tree

Kick

Classic leap-frog:

K(At/2) x D(At) x K(A/2)

Kick
]

Inactive Tree

Very Active

Time

Splitting the “drift”:
K(At/2) x D(At/2") - D(At/2") x K(A/2)



Time integration operator splitting

Algorithm:

e Compute “kick” (accelerations) only for the particles in
the current time bin.

e Apply the “drift” (move) to all the particles.

Nothing new. Applied everywhere especially in gravity codes.



Efficiency
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Efficiency
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Efficiency
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Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that?



Going beyond

The canonical algorithm drifts all the particles to the current
point in time.

Do we need that? No! Only the particles that are neighbours
of an active particle need to be moved forward.

-> Tree-walk “activating” the tasks in parts of the domain that need to. Followed
by the actual calculation.



Efficiency
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Efficiency
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Parallel efficiency

Parallel efficiency has dropped.

-> You computer scientist friend won't be happy.

But time-to-solution has decreased a lot.

-> Your scientist friend will be happy.



Not enough stuff to do
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How do we load-balance this
efficiently?



Smallest time-step problem

e Clearly impossible to distribute N particles effectively on
M nodes if N < M.

e Solution is then to make these steps as cheap as possible
and cut all overheads.

e The main one is MPI. Let’s cut that.



Classic domain decomposition
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Space-filling curve:

e Very common.

e Balances the data
(mostly).

e Makes sure the average
run time is low.



Domain Decomposition - visually

e Each MPI rank gets a
number of cells.

e How do we distribute
these cells among
nodes efficiently?




SWIFT strategy

SWIFT uses task-based parallelism.

Let's decompose the task-graph.

Give heavy weights to the communication tasks.

Ask graph decomposition library to solve the problem.

Density Force

Ghost in Ghost out End Force




A diagnostic
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Weak-scaling results
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Conclusions

e Local time-stepping is crucial to extract performance.

e Scaling is then not the relevant metric.
Time-to-solution is.

e Load-balancing must:

o Decompose the work not the data.

o Avoid MPI on the smallest steps.
o Task-based parallelism offers ideal framework for that.
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SPH With Interleaved Fine-grained Tasking

www.swiftsim.com

@SwiftSimulation


http://www.swiftsim.com
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