
SWIFT:
Task-based Calculation + Task-based MPI +

Task-based I/O = Maximal Performance

Dr. Matthieu Schaller (on behalf of the SWIFT team)

11/11/2017

Intel® HPC Developer Conference 2017

Denver, Colorado, US

∂

This work is a collaboration between two departments at Durham

University (UK):

 The Institute for Computational Cosmology,

 The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent

(Belgium), St-Andrews (UK), Lausanne (Switzerland)

as well as the DiRAC and STFC software team at Hartree (UK).

This research is partly funded by an Intel IPCC since January 2015.

Intel® HPC Developer Conference 2017 2

∂ Introduction

∂

What we do and how we do it

 Cosmological simulations of the

formation of galaxies.

 EAGLE project: 48 days of

computing on 4096 cores, most

cited astronomy paper of 2015.

 Simulate gravity and

hydrodynamics with particles.

 Large dynamic range and

>2M time-steps.

Intel® HPC Developer Conference 2017 4

∂

HPC Challenges in 2017

 Exploit all 3 levels of parallelism (MPI, threads, vector instructions).

 Decrease the CPI as much as possible (high FLOP / Byte read).

 Hide inter-node communications.

 Fast i/o on parallel file systems with many other users.

Intel® HPC Developer Conference 2017 5

∂

Challenges of our simulations

 Particles are unstructured in space.
→ No simple vectorizable pattern.

 Particles will move and the neighbours they interact with will change at

every time-step.
→ No pre-computed list or mesh that can be re-used over and over.

 Particles have individual time-steps.
→ Hard to load balance steps with only a handful of particles.

 Interactions are computationally cheap.
→ Likely dominated by memory bandwidth.

Intel® HPC Developer Conference 2017 6

∂

SWIFT particle hydrodynamics

Lesson 1: Make things predictable.

 Neighbour search done using a

grid with ~500 particles per cell.

 Cell size designed to match

search radius.

 Particles only interact with same

cell or 26 neighbouring cells.

 Can now list all interactions!

Intel® HPC Developer Conference 2017 7

∂

SWIFT particle hydrodynamics

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells (>1 000 000)

 for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring

cell ci

 const int count_i = cells[ci].count; // Around 400-500

 const int count_j = cells[cj].count;

 for(int i = 0; i < count_i; ++i) {

 for(int j = 0; j < count_j; ++j) {

 struct part *pi = &parts[i];

 struct part *pj = &parts[j];

 INTERACT(pi, pj); // symmetric interaction (low FLOPS)

} } } }

Intel® HPC Developer Conference 2017 8

∂

SWIFT particle hydrodynamics

for (int ci=0; ci < nr_cells; ++ci) {

 for(int cj=0; cj < 27; ++cj) {

 const int count_i = cells[ci].count; // Around 400-500

 const int count_j = cells[cj].count;

 for(int i = 0; i < count_i; ++i) {

 for(int j = 0; j < count_j; ++j) {

 struct part *pi = &parts[i];

 struct part *pj = &parts[j];

 INTERACT(pi, pj); // symmetric interaction (low FLOPS)

} } } }

Vectorization

Threads + MPI

Intel® HPC Developer Conference 2017 9

∂ Single-node parallelisation

∂

Traditional parallelisation pattern

“fork + join” model

Intel® HPC Developer Conference 2017 11

∂

Task-based parallelism

“Shared-memory parallel programming paradigm in which the computation

is formulated in an implicitly parallelizable way that automatically avoids

most of the problems associated with concurrency and load-balancing.”

We use our own (problem agnostic !) Open-source library QuickShed.

arxiv:1601.05384

Intel® HPC Developer Conference 2017 12

∂

Task-based parallelism

 Many libraries out there:
 HPX

 Charm++

 HiHat

 OmpSS

 …

 Quickshed is a simple (3000 lines) C library which handles conflicts and

dependencies, MPI communications and accelerators offloading.

 arxiv:1601.05384

Intel® HPC Developer Conference 2017 13

∂

Task-based parallelism

 Requires to re-write the software and not “just” add pragmas.

 Allows for simple (application scientist friendly!) code within tasks.

 Express the underlying algorithm as a graph.

time

Intel® HPC Developer Conference 2017 14

∂

Single node parallel performance

Almost perfect load-balancing on 16 cores.

Intel® HPC Developer Conference 2017 15

∂ Multi-node parallelism

∂

Multi-node parallelism

 Can’t afford the usual “send then compute” pattern.

 Need the same flexibility as on one rank as tasks are executed in

random order.

 Send small parts of the data within the tasking system.
→ Requires library that correctly implements MPI_THREAD_MULTIPLE.

→ Many experienced users and textbooks advise against this.

 If problem big enough, no need to care about latency or bandwidth!

 Very efficient use of the machine (network and FPUs at the same time!).

Intel® HPC Developer Conference 2017 17

∂

Multi-node parallelism

Intel® HPC Developer Conference 2017 18

∂

Some details

 Communication tasks do not perform any computation:
 Call MPI_Issend() and MPI_Irecv() when enqueued.

 Check communications have arrived with MPI_Test().

 Maximal performance: increase I_MPI_EAGER_THRESHOLD to allow for

most messages to be sent directly.

 Start the purely local tasks first, then the ones that depend on MPI data.

Intel® HPC Developer Conference 2017 19

∂

Multi-node parallelism

Intel ITAC output from two 36 cores Broadwell nodes.

→ More than 10’000 point-to-point communications over this time-step!
→ Almost 1’000’000 calls to MPI_Test().

Intel® HPC Developer Conference 2017 20

∂

Performance vs. Gadget-2

 Strong scaling of realistic

problem.

 Same accuracy.

 Same hardware.

 Same compiler.

 Same solution.

- 30.4x speed-up on 1 node!

- Code keeps scaling beyond

512 cores.

Intel® HPC Developer Conference 2017 21

∂ Quick I/O sneak-peak

∂

Task-based i/o

 i/o is another bottleneck where the run halts and under-uses the cluster.

 Traditional pattern is to stop and dump everything.

 Huge load on the filesystem and network!

 Very inefficient! Very hard to achieve theoretical peak i/o especially on

crowded systems.

Intel® HPC Developer Conference 2017 23

∂

Task-based i/o

 Take advantage of the time-step hierarchy.

 Dump only parts of the data that vary rapidly (i.e. has changed a lot

since last dump).

 Work on a cell-by-cell basis.

 Do this within the tasking system while the rest is happening.

→ No “stop and dump” pattern.

 Use memory-mapped files for maximal efficiency.

Intel® HPC Developer Conference 2017 24

∂ Vectorization

∂

Vectorization

 Interact particles in one cell with particles in another cell.

 → naively N2 algorithm.



 Need to construct local SoA cache for higher efficiency.



 Pre-sort particles on axis linking cells.



 Allows to only probe part of the interactions.

 → Reduce the number of false-positives!



 Need to use intrinsics as pattern too complex for auto-vectorizers.

Intel® HPC Developer Conference 2017 26

∂

Vectorization

Willis et al., Parco, 2017

Intel® HPC Developer Conference 2017 27

∂

Vectorization

Willis et al., Parco, 2017

Intel® HPC Developer Conference 2017 28

∂

Vectorization

Willis et al., Parco, 2017

More than 12x faster than a “perfect” naive implementation.

Intel® HPC Developer Conference 2017 29

∂

Limitations – Memory bandwidth

Intel® HPC Developer Conference 2017 30

∂

Limitations – Memory bandwidth

Intel® HPC Developer Conference 2017 31

∂

Conclusions & Take-home

messages

∂

Conclusions

 New ideas can challenge pre-existing paradigms.

 Try new things.

 Clever algorithms are often better than vectorized naive code.

 Hiding communications, hiding i/o and a flexible scheduler are key to

high performance on modern systems.

Intel® HPC Developer Conference 2017 33

∂

