SWIFT: Strong scaling for particle-hased
simulations on more than 100°000 cores.

Matthieu Schaller, Pedro Gonnet, Aidan B. G. Chalk & Peter W. Draper

Durham University, UK

PASC 2016 -- Lausanne, Switzerland -- 08 June 2016

This work is a collaboration between two departments at Durham University (UK):

e The Institute for Computational Cosmology,
e The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent (Belgium)
and the DiRAC software team.

This research is partly funded by an Intel IPCC since March 2015.

What we do and how we do it

e Astronomy / Cosmology simulations of the formation of
the Universe and galaxy evolution.

e EAGLE project’: 48 days of computing on 4096 cores. >500
TBytes of data products (post-processed data is public!). 5 o
Most cited astronomy paper of 2015. *

e Simulations of gravity and hydrodynamic forces with a
spatial dynamic range spanning 6 orders of magnitude
running for >2M time-steps.

e Most of it with the slightly outdated MPI-only GADGET e
code. Better scaling and performance required for the next EAGLE virtual universe.
generation runs.

'www.eaglesim.org

http://icc.dur.ac.uk/Eagle/

What we do and how we do it

e Solve coupled equations of gravity and
hydrodynarnics. EAGLE: Evolution and Assambly of G-aL:I:Iﬁi and their Environments

The eyclution of slegaiaciic gas Colour encodes i=ppesaibs
"

e Consider the interaction between gas J ”

and stars/black holes as part of a large
and complex subgrid model. “

e Evolve multiple matter species at the
same time. »

e Large density imbalances develop over
time:
— Difficult to load-balance.

Ll o
]
AR Pl
“ETE-
i
£2

http://www.youtube.com/watch?v=6V021B8FdyQ

SPH scheme: The problem to solve

e For a set of N (>10°) particles, we want to
exchange hydrodynamical forces between all
neighbouring particles within a given (time
and space variable) search radius.

e Very similar to molecular dynamics but
requires two loops over the neighbours.

e Challenges:
o Particles are unstructured in space, large
density variations.
o Particles will move and the neighbour list of
each particle evolves over time.

o Interaction between two particles is

computationally cheap (low flop/byte).

Task based parallelism

e Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly
parallelizable way that automatically avoids most of the problems associated with concurrency and load-
balancing.

e We first reduce the problem to a
set of inter-dependent tasks.

e For each task, we need to know:
o Which tasks it depends on,
o Which tasks it conflicts with.

e Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

e We use our own Open-source library QuickSched (arxiv:1601.05384)

http://arxiv.org/abs/1601.05384

SPH scheme: Single-node parallelization

e Neighbour search is performed via the use of
an adaptive grid constructed recursively
until we get ~500 particles per cell.

e Cell spatial size matches search radius.

e Particles interact only with partners in their
own cell or one of the 26 neighbouring cells.

I
|

SPH scheme: Single-node parallelization

)

e Neighbour search is performed via the use of
an adaptive grid constructed recursively

until we get ~500 particles per cell.

e Cell spatial size matches search radius.

O

e Particles interact only with partners in their
own cell or one of the 26 neighbouring cells.

e Amount of “work” per cell varies but order Sl
in which cells or pairs of cells is irrelevant.
— Perfect for task-based parallelism.

o

i i 000 Enaa

1
1
I
1
1
1
A
I
I
I
|
1
I
1
-
I
1

— Two tasks acting on the same cell conflict.
— The tasks of the second loop depend on
the tasks of the first loop.

@

SPH scheme: Adaptive mesh and recursive scheme

@ (5] &)

e Tasks get split recursively when cells they act
upon are too crowded.

o All the extra “sub-task” are automatically
added to the task scheduler.

e Allows to keep a roughly constant amount of
work per task.

e Tasks are kept at a size of a = L1 cache.
— Great for SIMD vectorization

SPH scheme: Single node parallel performance

L1
I

LT I
lHI : m W | |

e |
1] m N
[T B i
| W1 01 [m_ i
\ i m N
P e

i_n 1 |]
(I I | HH |

| |
@ _m_m
|
|

I
I 0 m
| .
L
|

[[
il m i1
g m 1 N I | I |
| [B
I
| I |

I o
[IIl

|
|
| N |

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

SWIFT tasks

Il | |
II’IIIII"lIIIIIII L] ill

| nmwi | L
I i N 1 I I Nl
[1 IlIIIIlllillIIllliI
I | | Ifllilllllll[l U AL
I [I I I N e
I D N .

[N BN B B B B
| i L I | (| L |

|
| | e -
O I N e N e i
I s | N W N e | I
i i e |
I =) [.
| D U B B BN [[
W W W m Rmgney | W I {1
i wvm I
IR [l

I
it "R 18 B_I 1 1 ®m_ 11
[/ | 117} |] B || W I N e
UL AT N | DN | My 0 (g o B om |
LI T | I I | I 1 b 1 | B 0 _
I B W fiiil [0 | L W e
I
il I

- . | O s LN
11 L1 i | I
ULV T 17 g § n | H m i n (IR N
[INE T W m 1 § N DmEgN R e
(- | D e B B B LA T4
110 1 . . il [

1] W]
(-
1] Il
JRLTILT

time (ms)

How can this success be extended to
clusters of many-core nodes ?

A given rank will need the cells directly
adjacent to it to interact with its particles.

Instead of sending all the “halo” cells at once
between the computation steps, we send
each cell individually using MPI
asynchronous communication primitives.

Sending/receiving data is just another task
type, and can be executed in parallel with the
rest of the computation.

Once the data has arrived, the scheduler
unlocks the tasks that needed the data.

No global lock or barrier !

Asynchronous communications as tasks

density

12

Asynchronous communications as tasks

e Communication tasks do not perform any computation:
o CallMPI_Isend() /MPI_Irecv() when enqueued.

o Dependencies are released when MPI_Test() says the data has been sent/received.

e Not all MPI implementations fully support the MPI v3.0 standard
o Uncovered several bugs in different implementations providing MPI_THREAD_MULTIPLE.

o eg:OpenMPI 110x crashes when running on Infiniband!

e Most experienced MPI users will advise against creating so many send/recv tasks.

e Most common analysis and benchmark tools do not support our approach!

13

Asynchronous communications as tasks

Bl ° neworow P wriesoancedint) @ Y [* B

e Message size is 5-10kB.

o
(LT

Pam—
i

e On 32 ranks with 16M particles in 250’000
cells, we get ~58°000 point-to-point messages

per time-step!

e Relieson MPI_THREAD MULTIPLE as all the
local threads can emit sends and receives.

e Spreads the load on the network over the

w Group
Group Application 67.1465 s MMM 72.0136 s 19958792 3.36426e-6 s

whole time-step. . . - o aar

— More efficient use of the network! - s D e iz

6
10324 3.1666e-6 s
10360 4.14865e-6 s

— Not limited by bandwidth. : e oty

31835

Intel ITAC output from 2x36-cores Broadwell nodes. Every black

line is a communication between two threads (blue bands).
14

Asynchronous communications as tasks

e Message size is 5-10kB.

e On 32 nodes with 16M particles in 250’000

Flat Profile Load Balance Call Tree Call Graph

: i
cells, we get ~58’000 point-to-point messages M=
Name TsSelf TSelf TTotal #Calls Tself /call

per time-step! 4 New Group
- Group Application 67.1465 s [N 72.0136 s 19958792 3.36426e—6 s
.- AUTO_FLUSH 3.44824 s 3.44824 s 8 431.03e-3 s
c RACE_OFF 142.12e-3 s 142.12e-3 s 1 142.12e-3 s
® Relies on MP I_THREAD_MU LTIPLE as all the MPI_Test 1.15695 s | 1.15695 s 908674 1.27322e-6 s
. . MPI_Isend 32.692e-3 s 32.692e-3 s 10324 3.1666e-6 s
local threads can emit sends and receives. 42.980-3 s 42.98e-3 s 10360 4.148652-6 s

44.13%9e-3 s 44.13%e-3 s 2 22.0695e-3 s

e Spreads the load on the network over the

whole time-step. Intel ITAC output from 2x36-cores Broadwell nodes. >10k point-
— More efficient use of the network! to-point communications are reported over this time-step.

— Not limited by bandwidth.

15

Domain decomposition

For each task we compute the amount of
work (=runtime) required.

We can build a graph in which the
simulation data are nodes and the tasks
operation on the data are hyperedges.

The task graph is split to balance the work
(not the data!) using METIS.

Tasks spanning the partition are computed
on both sides, and the data they use needs to
be sent/received between ranks.

Send and receive tasks and their
dependencies are generated automatically.

16

Domain decomposition

e Domain geometry can be complex.
o No regular grid pattern.
o No space-filling curve order.

o Good load-balancing by construction.

e Domain shapes and computational costs
evolve over the course of the simulation.
o Periodically update the graph partitioning.
o May lead to large (unnecessary?) re-shuffling

of the data across the whole machine.

17

Multiple node parallel performance

SWIFT tasks

O PO VN PR W T e U
. ¥ e
o e

ol i N P
 me—

time (ms)

Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8 nodes of 12 cores.

18

How does this perform on various
architectures ?

Scaling results: DiRAC Data Centric facility “Cosma-5”

SWIFT Strong scaling on Cosma-5 with 51M particles from 1 to 256 threads
1.2

=,
oo
12 cores
48 cores

128 cores

<
~

)
2
—
o
=
Q
£
=0
—
]
—
o
—
<
[a W

256 cores

= = With hyper — threading on a single node

=== (On multiple nodes

I
b

0.0
50 100 150 200 250 300 109 10!
Threads Threads

System: x86 architecture - 2 Intel Sandy Bridge-EP Xeon E5-2670 at 2.6 GHz with 128 GByte of RAM per node.
20

Scaling results: SuperMUC (#22 in Top500)

SWIFT Strong scaling on SuperMUC with 512M particles from 16 to 2048 nodes and 16 threads per node
1.2

=
o0
256 cores
2048 cores
4096 cores
8192 cores
16384 cores

512 cores
1024 cores
32768 cores

>
2
—
2]
=
&
(-
=0
—
(]
—
o
—
<
[al

<

500 1000 1500 2000
Nodes

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of RAM per node.

21

Scaling results: JUQUEEN (#11 in Top500)

SWIFT Strong scaling on JUQUEEN with 216M particles from 32 to 8192 nodes and 32 threads per node

)
512 cores
1024 cores
2048 cores
4096 cores
8192 cores
16384 cores

32768 cores

0.

65536 cores

<
~

>
2
—
2]
=
Q
E
[aa)
—
]
—
o
—
<
[al

131072 cores

2000 4000 6000 8000
Nodes

System: BlueGene Q - IBM PowerPC A2 processors running at 1.6 GHz with 16 GByte of RAM per node.

Scaling results

e Almost perfect strong-scaling performance
on a cluster of many-core nodes when
increasing the number of threads per node
(fixed #MPI ranks).

® C(Clear benefit of task-based parallelism and
asynchronous communication.

e Future-proof! As the thread/core count per
node increases, so does the code

performance.

e Why?
— Because we don’t rely on MPI for intra-
node communications.

Strong scaling on 512 JUQUEEN nodes

10 15 20
Threads per node

25

30

23

More on SWIFT

e Completely open-source software including all the examples and scripts.
e ~20°000 lines of C code without fancy language extensions.

e More than 10x faster than the de-facto standard Gadget code on the same setup
and same architecture. Thanks to:

o Better algorithms
o Better parallelisation strategy

o Better domain decomposition strategy

e Fully compatible with Gadget in terms of input and output files.

24

More on SWIFT

Gravity solved using a FMM and mesh for
periodic and long-range forces.

Gravity and hydrodynamics are solved at the
same time on the same particles as different
properties are updated. No need for an
explicit lock.

I/O done using the (parallel) HDFS5 library,
currently working on a continuous
asynchronous approach.

Task-based parallelism allows for very
simple code within tasks.

— Very easy to extend with new physics
without worrying about parallelism.

Conclusion and Outlook

e (ollaboration between Computer scientists and physicists works!

e Developed usable simulation software using state-of-the-art paradigms.
e Great strong-scaling results up to >100°000 cores.

e Future: Addition of more physics to the code.

e Future: Make use of the CPU vector units (SIMD) to gain extra speed.

26

www.swiftsim.org

