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∂ Introduction 



∂ 

What we do and how we do it 

 Cosmological simulations of the 

formation of galaxies. 

 

 EAGLE project: 48 days of 

computing on 4096 cores, most 

cited astronomy paper of 2015. 

 

 Simulate gravity and 

hydrodynamics with particles.  

 

 Large dynamic range and  

>2M time-steps. 
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∂ 

HPC Challenges in 2017 

 Exploit all 3 levels of parallelism (MPI, threads, vector instructions). 

 

 Decrease the CPI as much as possible (high FLOP / Byte read). 

  

 Hide inter-node communications. 

  

 Fast i/o on parallel file systems with many other users.  
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∂ 

Challenges of our simulations 

 Particles are unstructured in space. 
→ No simple vectorizable pattern. 

 

 Particles will move and the neighbours they interact with will change at 

every time-step. 
→ No pre-computed list or mesh that can be re-used over and over. 

 

 Particles have individual time-steps. 
→ Hard to load balance steps with only a handful of particles. 

  

 Interactions are computationally cheap. 
→ Likely dominated by memory bandwidth. 
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SWIFT particle hydrodynamics 

Lesson 1: Make things predictable. 

  

 Neighbour search done using a 

grid with ~500 particles per cell. 

  

 Cell size designed to match 

search radius. 

  

 Particles only interact with same 

cell or 26 neighbouring cells. 

  

 Can now list all interactions! 
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SWIFT particle hydrodynamics 

for (int ci=0; ci < nr_cells; ++ci) {   // loop over all cells (>1 000 000) 

   for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring 

cell ci 

 
      const int count_i = cells[ci].count;  // Around 400-500 

      const int count_j = cells[cj].count; 

 
      for(int i = 0; i < count_i; ++i) { 

         for(int j = 0; j < count_j; ++j) { 

 
            struct part *pi = &parts[i]; 

            struct part *pj = &parts[j];  

 
           INTERACT(pi, pj);   // symmetric interaction (low FLOPS) 

} } } } 
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∂ 

SWIFT particle hydrodynamics 

for (int ci=0; ci < nr_cells; ++ci) {    

   for(int cj=0; cj < 27; ++cj) {  

 
      const int count_i = cells[ci].count;  // Around 400-500 

      const int count_j = cells[cj].count; 

 
      for(int i = 0; i < count_i; ++i) { 

         for(int j = 0; j < count_j; ++j) { 

 
            struct part *pi = &parts[i]; 

            struct part *pj = &parts[j];  

 
           INTERACT(pi, pj);   // symmetric interaction (low FLOPS) 

} } } } 

Vectorization 

Threads + MPI 
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∂ Single-node parallelisation 



∂ 

Traditional parallelisation pattern 

“fork + join” model 
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∂ 

Task-based parallelism 

“Shared-memory parallel programming paradigm in which the computation 

is formulated in an implicitly parallelizable way that automatically avoids 

most of the problems associated with concurrency and load-balancing.” 

 

 

 

 

 

 

 

 

 

We use our own (problem agnostic !) Open-source library QuickShed.  

 

 

 

arxiv:1601.05384 
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∂ 

Task-based parallelism 

 Many libraries out there: 
 HPX 

 Charm++ 

 HiHat 

 OmpSS 

 … 

 

 Quickshed is a simple (3000 lines) C library which handles conflicts and 

dependencies, MPI communications and accelerators offloading.  

 

 arxiv:1601.05384 
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∂ 

Task-based parallelism 

 

 

 

 

 Requires to re-write the software and not “just” add pragmas. 

 

 Allows for simple (application scientist friendly!) code within tasks. 

  

 Express the underlying algorithm as a graph. 

time 
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∂ 

Single node parallel performance 

Almost perfect load-balancing on 16 cores.  
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∂ Multi-node parallelism 



∂ 

Multi-node parallelism 

 Can’t afford the usual “send then compute” pattern. 

 

 Need the same flexibility as on one rank as tasks are executed in 

random order. 

  

  Send small parts of the data within the tasking system.  
→ Requires library that correctly implements MPI_THREAD_MULTIPLE. 

→ Many experienced users and textbooks advise against this. 

  

 If problem big enough, no need to care about latency or bandwidth! 

  

 Very efficient use of the machine (network and FPUs at the same time!). 
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∂ 

Multi-node parallelism 
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Some details 

 Communication tasks do not perform any computation: 
 Call MPI_Issend() and MPI_Irecv() when enqueued. 

 Check communications have arrived with MPI_Test(). 

  
 Maximal performance: increase I_MPI_EAGER_THRESHOLD to allow for 

most messages to be sent directly.  

 

 Start the purely local tasks first, then the ones that depend on MPI data. 
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∂ 

Multi-node parallelism 

Intel ITAC output from two 36 cores Broadwell nodes. 

→ More than 10’000 point-to-point communications over this time-step! 
→ Almost 1’000’000 calls to MPI_Test(). 
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∂ 

Performance vs. Gadget-2 

 Strong scaling of realistic 

problem. 

 

 Same accuracy. 

 Same hardware. 

 Same compiler. 

 Same solution. 

  

- 30.4x speed-up on 1 node! 

- Code keeps scaling beyond          

512 cores. 
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∂ Quick I/O sneak-peak 



∂ 

Task-based i/o 

 i/o is another bottleneck where the run halts and under-uses the cluster. 

 

 Traditional pattern is to stop and dump everything. 

  

 Huge load on the filesystem and network! 

  

 Very inefficient! Very hard to achieve theoretical peak i/o especially on 

crowded systems. 
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∂ 

Task-based i/o 

 Take advantage of the time-step hierarchy. 

 

 Dump only parts of the data that vary rapidly (i.e. has changed a lot 

since last dump). 

 

 Work on a cell-by-cell basis. 

  

 Do this within the tasking system while the rest is happening. 

→ No “stop and dump” pattern. 

  

 Use memory-mapped files for maximal efficiency. 
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∂ Vectorization 



∂ 

Vectorization 

 Interact particles in one cell with particles in another cell. 

 → naively N2 algorithm. 

   

 Need to construct local SoA cache for higher efficiency. 

   

 Pre-sort particles on axis linking cells. 

   

 Allows to only probe part of the interactions. 

 → Reduce the number of false-positives! 

   

 Need to use intrinsics as pattern too complex for auto-vectorizers. 
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∂ 

Vectorization 

Willis et al., Parco, 2017 
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∂ 

Vectorization 

Willis et al., Parco, 2017 
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∂ 

Vectorization 

Willis et al., Parco, 2017 

More than 12x faster than a “perfect” naive implementation. 
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Limitations – Memory bandwidth 
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∂ 

Limitations – Memory bandwidth 
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∂ 

Conclusions & Take-home 

messages 



∂ 

Conclusions 

 New ideas can challenge pre-existing paradigms. 

 

 Try new things. 

  

 Clever algorithms are often better than vectorized naive code. 

  

 Hiding communications, hiding i/o and a flexible scheduler are key to 

high performance on modern systems. 
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