SWIFT:

Task-based Calculation + Task-based MPI +
ask-based 1/0 = Maximal Performance

Dr. Matthieu Schaller (on behalf of the SWIFT team)
11/11/2017

Intel® HPC Developer Conference 2017
Denver, Colorado, US

"Durham

University

This work is a collaboration between two departments at Durham
University (UK):

« The Institute for Computational Cosmology,
. The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent
(Belgium), St-Andrews (UK), Lausanne (Switzerland)
as well as the DIRAC and STFC software team at Hartree (UK).

This research is partly funded by an Intel IPCC since January 2015.

DA]
" Durham Intel® HPC Developer Conference 2017
University

Introduction

AR
W Durham

University

What we do and how we do it

Cosmological simulations of the
formation of galaxies.

EAGLE project: 48 days of
computing on 4096 cores, most
cited astronomy paper of 2015.

Simulate gravity and
hydrodynamics with particles.

Large dynamic range and
>2M time-steps.

DA]
" Durham Intel® HPC Developer Conference 2017
University

HPC Challenges in 2017

Exploit all 3 levels of parallelism (MPI, threads, vector instructions).
Decrease the CPI as much as possible (high FLOP / Byte read).
Hide inter-node communications.

Fast i/o on parallel file systems with many other users.

DA]
"Durham Intel® HPC Developer Conference 2017
University

Challenges of our simulations

Particles are unstructured in space.
— No simple vectorizable pattern.

Particles will move and the neighbours they interact with will change at
every time-step.
— No pre-computed list or mesh that can be re-used over and over.

Particles have individual time-steps.
— Hard to load balance steps with only a handful of particles.

Interactions are computationally cheap.
— Likely dominated by memory bandwidth.

DA]
" Durham Intel® HPC Developer Conference 2017

University

SWIFT particle hydrodynamics

Lesson 1. Make things predictable.

Neighbour search done using a
grid with ~500 particles per cell.

Cell size designed to match
search radius.

Particles only interact with same
cell or 26 neighbouring cells.

Can now list all interactions!

AR
"Durham Intel® HPC Developer Conference 2017
University

SWIFT particle hydrodynamics

for (int ci=0; ci < nr_cells; ++ci) { // loop over all cells (>1 000 000)
for (int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring

cell ci

const int count i = cells[ci].count; // Around 400-500
const int count_Jj = cells[cj].count;

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++3j) {

struct part *pi = g&parts[i];
struct part *pj = &parts[j];

INTERACT (pi, pj): // symmetric interaction (low FLOPS)

AR
"Durham Intel® HPC Developer Conference 2017

University

SWIFT particle hydrodynamics

for (int ci=0; ci < nr_cells; ++ci) {
for (int cj=0; cj < 27; ++cj) { Threads + MPI

const int count i = cells[ci].count; // Around 400-500

const int count j = cells[cj].count; Vectorization

for(int i = 0; i < count_i; ++i) {
for(int j = 0; j < count_j; ++j) {

struct part *pi &parts[i] ;
struct part *pj &parts[j];

INTERACT (pi, pj): // symmetric interaction (low FLOPS)

A

"Durham Intel® HPC Developer Conference 2017
University

Single-node parallelisation

AR
W Durham

University

Traditional parallelisation pattern

“fork + join” model

o

| | »: |

-

AR
"Durham Intel® HPC Developer Conference 2017
University

Task-based parallelism

“Shared-memory parallel programming paradigm in which the computation
Is formulated in an implicitly parallelizable way that automatically avoids
most of the problems associated with concurrency and load-balancing.”

We use our own (problem agnostic !) Open-source library QuickShed.

arxiv:1601.05384

DA]
" Durham Intel® HPC Developer Conference 2017 12
University

Task-based parallelism

. Many libraries out there:
« HPX
Charm++
HiHat
OmpSS

« Quickshed is a simple (3000 lines) C library which handles conflicts and
dependencies, MPI communications and accelerators offloading.

o arxiv:1601.05384

DA]
"Durham Intel® HPC Developer Conference 2017
University

Task-based parallelism

« Requires to re-write the software and not “just” add pragmas.
 Allows for simple (application scientist friendly!) code within tasks.

. EXxpress the underlying algorithm as a graph.

5
B
Q
—
o
g
o
=

AR

" Durham Intel® HPC Developer Conference 2017
University

Single node parallel performance

19 T .

ig‘ == SUb pair/density = self/density kickl

16 - pair/density = drift_part — kick2
15 4 === sub_self/density sort - timestep
SR 11 L0 0T 010 1 O

sy I {1 TR R AR AR AR

vt I WLETRTCNE LR 0K | (LI YRR R0 [AT

e O | CINUINT 11 VTR VDI 1 A AR AT (NN
A {1 WA KA 1T T VAT 10O AN A

g |1 INURHDI0 AT TN A 0 AR (K 000U OO T LT R IR
21 U OO0 IO A s AT AT RN
{1 AT O O ONMCCRNILME [| TR N AU NI AU N
LS Y AL TR T TN T 1T N
oS (w101 (R 01 1 ORI AT 1 L SRR LTI AT L RN T
LR OO WRRMWITRCILE SO o AT A
51! II LI AT O R [IIII || [T |1 H{
|

[

E | L TE T L ANE L LA 1T TR

U T RO R OO DR Y0 AR |

0 1000 2000 300(
wWall clock time Imsl

Thread |D
[1s]

Almost perfect load-balancing on 16 cores.

DA]
"Durham Intel® HPC Developer Conference 2017 15
University

Multi-node parallelism

AR
W Durham

University

Multi-node parallelism

Can'’t afford the usual “send then compute” pattern.

Need the same flexibility as on one rank as tasks are executed in
random order.

Send small parts of the data within the tasking system.
— Requires library that correctly implements MPTI THREAD MULTIPLE.
— Many experienced users and textbooks advise against this.

If problem big enough, no need to care about latency or bandwidth!

Very efficient use of the machine (network and FPUs at the same time!).

DA]
" Durham Intel® HPC Developer Conference 2017
University

Multi-node parallelism

AR
"Durham Intel® HPC Developer Conference 2017
University

Some detalls

. Communication tasks do not perform any computation:
« CallMPI Issend() and MPI Irecv () when enqueued.

« Check communications have arrived with MPI Test ().

« Maximal performance: increase I MPI EAGER THRESHOLD to allow for
most messages to be sent directly.

. Start the purely local tasks first, then the ones that depend on MPI data.

DA]
" Durham Intel® HPC Developer Conference 2017
University

Multi-node parallelism

I Flat Profile Load Balance Call Tree Call Graph

| New Group v|

Name T5elf TSelf TTotal #Calls TSelf /Call

4 New Group

- Group Application 67.1465 s [N 72.0136 s 19958792 3.36426e—6
- AUTO_FLUSH 3.44824 s 3.44824 s 8 431.03e-3
- TRACE_OFF 142.12e-3 s 142.12e-3 s 1 142.12e-3
- MPI Test 1.15695 s | 1.15695 s 908674 1.27322e-6
- MPI_Isend 32.692e-3 s 32.692e-3 s 10324 3.1666e—6
- MPI_Irecv 42.98e-3 s 42.98e-3 s 10360 4.14865e—6
s

-~ MPI Allreduce 44.139% -3 s 44.139 -3 2 22.0695e-3

Intel ITAC output from two 36 cores Broadwell nodes.
— More than 10’000 point-to-point communications over this time-step!
— Almost 1°000°000 calls to MPTI Test ().

AR
"Durham Intel® HPC Developer Conference 2017

University

Performance vs. Gadget-2

Strong scaling of realistic

problem.

,_.
<
B
T

Same accuracy.
Same hardware.
Same compiler.
Same solution.

Wallclock time to solution [ms]

- 30.4x speed-up on 1 node!
- Code keeps scaling beyond
512 cores.

—— Gadget-2 - 2.0.7
= SWIFT - v0.6.0

AR
"Durham Intel® HPC Developer Conference 2017
University

H
2

S
=
~ Wallclock time to solution |hr]

Quick 1/0 sneak-peak

AR
W Durham

University

Task-based 1/0

i/0 is another bottleneck where the run halts and under-uses the cluster.
Traditional pattern is to stop and dump everything.
Huge load on the filesystem and network!

Very inefficient! Very hard to achieve theoretical peak i/o especially on
crowded systems.

DA]
" Durham Intel® HPC Developer Conference 2017
University

Task-based 1/0

Take advantage of the time-step hierarchy.

Dump only parts of the data that vary rapidly (i.e. has changed a lot
since last dump).

Work on a cell-by-cell basis.

Do this within the tasking system while the rest is happening.
— No “stop and dump” pattern.

Use memory-mapped files for maximal efficiency.

DA]
" Durham Intel® HPC Developer Conference 2017
University

Vectorization

AR
W Durham

University

Vectorization

Interact particles in one cell with particles in another cell.
— naively N? algorithm.

Need to construct local SoA cache for higher efficiency.
Pre-sort particles on axis linking cells.

Allows to only probe part of the interactions.
— Reduce the number of false-positives!

Need to use intrinsics as pattern too complex for auto-vectorizers.

DA]
" Durham Intel® HPC Developer Conference 2017
University

Vectorization

O O
Q

N N}Ifif,

Willis et al., Parco, 2017

AR
"Durham Intel® HPC Developer Conference 2017 27
University

Vectorization

(@) (b)

dY 4 pl@)

-—0——-o—oo--o—o—0—(#)*-%()}0——0—000-—-0—0»
a
Py

Willis et al., Parco, 2017

AR
"Durham Intel® HPC Developer Conference 2017 28
University

Vectorization

Machine Name CFLAGS Scalar Time [ms] Vectorised Time [ms]
(-no-vec -no-simd)

COSMA-5 -xAVX 0.56 0.25
Hamilton -xCORE-AVX?2 0.49 0.20
Kyll -xMIC-AVX512 1.98 0.49

More than 12x faster than a “perfect” naive implementation.

Willis et al., Parco, 2017

AR
"Durham Intel® HPC Developer Conference 2017 29
University

Limitations — Memory bandwidth

Jcosma5/data/dp004/dc-will2/SWIFT/drift_vec/swiftsim/examples/SedovBlast_3D/drift_roofline - Intel Advisor (on cosma-f.cosma)
File View Help

‘h B EHE B TR AY SO

Welcome | €000

& summary %% Survey & Roofline | % Refinement Reports

&

A& Some target modules do not contain debug information
Suggestion: enable debug information for relevant modules.

Performance (GFLOPS) kQ E

AIAUNS

100

0.01

| O Use Single-Threaded Roofs @

: [2]
INTEL ADVISOR 2017

?
. SP Vector Add Peafj: 275.28 GFLOPS”

2
o DP Vector Add Peak: 137.6 GFLOPS’

2
Scalar Add Peak: 34.41 GFLOPS”

& °
Q o)
(o]
cache_read_two_partial_cells_sorted _force cache.h:568 2
Performance: 1.25 GFLOPS -
L1 Arithmetic Intensity: 0.02 FLOP/Byte 6 loops total
Self Elapsed Time: 1.189 s
Total Time: 13.912 s
> %
0.01 0.1
Self Elapsed Time: 1.190 s Total Time: 14.789 s

Source | Top Down | Code Analytics | Assembly ‘wﬁ Recommendations |E Why No Vectorization? ‘

University

Arithmetic Intensity (FLOP/Byte)

. 30 2

Limitations — Memory bandwidth

Jcosma5/data/dp004/dc-will2/SWIFT/drift_vec/swiftsim/examples/SedovBlast_3D/drift_roofline - Intel Advisor (on cosma-f.cosma)
File View Help

‘h B EHE B TR AY SO

Welcome | €000
Elapsed time: 69.20s Not Vectorized FILTER:| All Modules ~ All Threads ~

& summary %% Survey & Roofline | % Refinement Reports

&

A& Some target modules do not contain debug information
Suggestion: enable debug information for relevant modules.

Performance (GFLOPS) [} \§| [| O Use Single-Threaded Roofs @

AIAUNS

100

0.01

0.01

: [2]
INTEL ADVISOR 2017

?
SP Vector Add Peak: 275.28 GFLOPS”
a £ 1=}

2
o DP Vector Add Peak: 137.6 GFLOPS’
Q =3

runner_doself2_force_vec runner_doiact_vec.c:836
Performance: 147.82 GFLOPS

L1 Arithmetic Intensity: 0.49 FLOP/Byte

Self Elapsed Time: 1.840 s

Total Time: 25.279 s

o7
~

‘

21 loops total

~ P

%

Self Elapsed Time: 3.023 s Total Time: 91.423 s

Source | Top Down | Code Analytics | Assembly ‘wﬁ Recommendations |E Why No Vectorization? ‘

University

0.1

Arithmetic Intensity (FLOP/Byte)

- 31 -

Conclusions & Take-home
messages

AR
W Durham

University

Conclusions

New ideas can challenge pre-existing paradigms.
Try new things.
Clever algorithms are often better than vectorized naive code.

Hiding communications, hiding i/o and a flexible scheduler are key to
high performance on modern systems.

AR
W Durham

University

Intel® HPC Developer Conference 2017

Time=0.00 Gyr

¥,

%'Durham

University

