
SWIFT: Strong scaling for particle-based
simulations on more than 100’000 cores.

Matthieu Schaller, Pedro Gonnet, Aidan B. G. Chalk & Peter W. Draper

Durham University, UK

PASC 2016 -- Lausanne, Switzerland -- 08 June 2016

2

This work is a collaboration between two departments at Durham University (UK):

● The Institute for Computational Cosmology,

● The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent (Belgium)

and the DiRAC software team.

This research is partly funded by an Intel IPCC since March 2015.

What we do and how we do it
● Astronomy / Cosmology simulations of the formation of

the Universe and galaxy evolution.

● EAGLE project

1

: 48 days of computing on 4096 cores. >500

TBytes of data products (post-processed data is public!).

Most cited astronomy paper of 2015.

● Simulations of gravity and hydrodynamic forces with a

spatial dynamic range spanning 6 orders of magnitude

running for >2M time-steps.

● Most of it with the slightly outdated MPI-only GADGET

code. Better scaling and performance required for the next

generation runs.

3

One simulated galaxy out of the

EAGLE virtual universe.

1

www.eaglesim.org

http://icc.dur.ac.uk/Eagle/

What we do and how we do it
● Solve coupled equations of gravity and

hydrodynamics.

● Consider the interaction between gas

and stars/black holes as part of a large

and complex subgrid model.

● Evolve multiple matter species at the

same time.

● Large density imbalances develop over

time:

→ Difficult to load-balance.

http://www.youtube.com/watch?v=6V021B8FdyQ

SPH scheme: The problem to solve
● For a set of N (>10

9

) particles, we want to

exchange hydrodynamical forces between all

neighbouring particles within a given (time

and space variable) search radius.

● Very similar to molecular dynamics but

requires two loops over the neighbours.

● Challenges:

○ Particles are unstructured in space, large

density variations.

○ Particles will move and the neighbour list of

each particle evolves over time.

○ Interaction between two particles is

computationally cheap (low flop/byte).

5

Task based parallelism

6

● Shared-memory parallel programming paradigm in which the computation is formulated in an implicitly

parallelizable way that automatically avoids most of the problems associated with concurrency and load-

balancing.

● We first reduce the problem to a

set of inter-dependent tasks.

● For each task, we need to know:

○ Which tasks it depends on,

○ Which tasks it conflicts with.

● Each thread then picks up a task which has no unresolved dependencies or conflicts and computes it.

● We use our own Open-source library QuickSched (arXiv:1601.05384)

http://arxiv.org/abs/1601.05384

SPH scheme: Single-node parallelization
● Neighbour search is performed via the use of

an adaptive grid constructed recursively

until we get ~500 particles per cell.

● Cell spatial size matches search radius.

● Particles interact only with partners in their

own cell or one of the 26 neighbouring cells.

7

SPH scheme: Single-node parallelization
● Neighbour search is performed via the use of

an adaptive grid constructed recursively

until we get ~500 particles per cell.

● Cell spatial size matches search radius.

● Particles interact only with partners in their

own cell or one of the 26 neighbouring cells.

● Amount of “work” per cell varies but order

in which cells or pairs of cells is irrelevant.

→ Perfect for task-based parallelism.

→ Two tasks acting on the same cell conflict.

→ The tasks of the second loop depend on

the tasks of the first loop.

8

SPH scheme: Adaptive mesh and recursive scheme
● Tasks get split recursively when cells they act

upon are too crowded.

● All the extra “sub-task” are automatically

added to the task scheduler.

● Allows to keep a roughly constant amount of

work per task.

● Tasks are kept at a size of a ≈ L1 cache.

→ Great for SIMD vectorization

9

SPH scheme: Single node parallel performance

10

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32 cores.

11

How can this success be extended to
clusters of many-core nodes ?

Asynchronous communications as tasks
● A given rank will need the cells directly

adjacent to it to interact with its particles.

● Instead of sending all the “halo” cells at once

between the computation steps, we send

each cell individually using MPI

asynchronous communication primitives.

● Sending/receiving data is just another task

type, and can be executed in parallel with the

rest of the computation.

● Once the data has arrived, the scheduler

unlocks the tasks that needed the data.

● No global lock or barrier !

12

Asynchronous communications as tasks

13

● Communication tasks do not perform any computation:

○ Call MPI_Isend() / MPI_Irecv() when enqueued.

○ Dependencies are released when MPI_Test() says the data has been sent/received.

● Not all MPI implementations fully support the MPI v3.0 standard

○ Uncovered several bugs in different implementations providing MPI_THREAD_MULTIPLE.

○ e.g.: OpenMPI 1.10.x crashes when running on Infiniband!

● Most experienced MPI users will advise against creating so many send/recv tasks.

● Most common analysis and benchmark tools do not support our approach!

Asynchronous communications as tasks
● Message size is 5-10kB.

● On 32 ranks with 16M particles in 250’000

cells, we get ~58’000 point-to-point messages

per time-step!

● Relies on MPI_THREAD_MULTIPLE as all the

local threads can emit sends and receives.

● Spreads the load on the network over the

whole time-step.

→ More efficient use of the network!

→ Not limited by bandwidth.

14

Intel ITAC output from 2x36-cores Broadwell nodes. Every black

line is a communication between two threads (blue bands).

Asynchronous communications as tasks
● Message size is 5-10kB.

● On 32 nodes with 16M particles in 250’000

cells, we get ~58’000 point-to-point messages

per time-step!

● Relies on MPI_THREAD_MULTIPLE as all the

local threads can emit sends and receives.

● Spreads the load on the network over the

whole time-step.

→ More efficient use of the network!

→ Not limited by bandwidth.

15

Intel ITAC output from 2x36-cores Broadwell nodes. >10k point-

to-point communications are reported over this time-step.

Domain decomposition
● For each task we compute the amount of

work (=runtime) required.

● We can build a graph in which the

simulation data are nodes and the tasks

operation on the data are hyperedges.

● The task graph is split to balance the work

(not the data!) using METIS.

● Tasks spanning the partition are computed

on both sides, and the data they use needs to

be sent/received between ranks.

● Send and receive tasks and their

dependencies are generated automatically.

16

Domain decomposition
● Domain geometry can be complex.

○ No regular grid pattern.

○ No space-filling curve order.

○ Good load-balancing by construction.

● Domain shapes and computational costs

evolve over the course of the simulation.

○ Periodically update the graph partitioning.

○ May lead to large (unnecessary?) re-shuffling

of the data across the whole machine.

17

Multiple node parallel performance

18

Task graph for one time-step. Red and yellow are MPI tasks. Almost perfect load-balancing is achieved on 8 nodes of 12 cores.

19

How does this perform on various
architectures ?

Scaling results: DiRAC Data Centric facility “Cosma-5”

System: x86 architecture - 2 Intel Sandy Bridge-EP Xeon E5-2670 at 2.6 GHz with 128 GByte of RAM per node.

20

Scaling results: SuperMUC (#22 in Top500)

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByte of RAM per node.

21

Scaling results: JUQUEEN (#11 in Top500)

System: BlueGene Q - IBM PowerPC A2 processors running at 1.6 GHz with 16 GByte of RAM per node.

22

Scaling results

23

● Almost perfect strong-scaling performance

on a cluster of many-core nodes when

increasing the number of threads per node

(fixed #MPI ranks).

● Clear benefit of task-based parallelism and

asynchronous communication.

● Future-proof! As the thread/core count per

node increases, so does the code

performance.

● Why?

→ Because we don’t rely on MPI for intra-

node communications.

More on SWIFT
● Completely open-source software including all the examples and scripts.

● ~20’000 lines of C code without fancy language extensions.

● More than 10x faster than the de-facto standard Gadget code on the same setup

and same architecture. Thanks to:

○ Better algorithms

○ Better parallelisation strategy

○ Better domain decomposition strategy

● Fully compatible with Gadget in terms of input and output files.

24

More on SWIFT

25

● Gravity solved using a FMM and mesh for

periodic and long-range forces.

● Gravity and hydrodynamics are solved at the

same time on the same particles as different

properties are updated. No need for an

explicit lock.

● I/O done using the (parallel) HDF5 library,

currently working on a continuous

asynchronous approach.

● Task-based parallelism allows for very

simple code within tasks.

→ Very easy to extend with new physics

without worrying about parallelism.

Conclusion and Outlook
● Collaboration between Computer scientists and physicists works!

● Developed usable simulation software using state-of-the-art paradigms.

● Great strong-scaling results up to >100’000 cores.

● Future: Addition of more physics to the code.

● Future: Make use of the CPU vector units (SIMD) to gain extra speed.

26

www.swiftsim.org

27

