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Take-home messages
What this talk is all about

In order to continue getting faster, programs need to become more parallel.

−→ If a program has reached its maximum degree of parallelism, it won’t get
any faster. Ever.

On shared-memory systems, asynchronous task-based parallelism solves
most problems with concurrency and scaling.

−→ But we still need to develop task-based algorithms for specific problems,
e.g. SPH simulations.

Better algorithms alone can lead to speedups of up to a factor of ten.

−→ Better use of both existing and future infrastructure.
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Take-home messages
Case in point

Cosmological simulation (galaxy formation) with 1.8 M particles in a cubic box
of 6.25 Mpc on a 4× Intel Xeon X7550 with 32 cores, 2 GHz.
GADGET-3, MPI-based, used for multi-billion particle simulations.
SWIFT, our own code for the same problem.

13× faster on 32 cores.
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Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.

For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,

I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main idea

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 4/14



Task-based parallelism
Main advantages

The order in which the tasks are processed is dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.

−→ No need for expensive explicit locking, synchronization, or atomic
operations.

Each task has exclusive access to the data it is working on, thus improving
cache efficiency.
The same approach can be applied to more unconventional many-core
systems such as GPUs.
However, this usually means that we have to re-think our entire computation,
e.g. redesign it from scratch to make it task-based.
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Task-based algorithms for SPH
Neighbour-finding with trees

In multi-resolution SPH, Spatial trees are the
most commonly used approach to
neighbour-finding, as the particle distribution
can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.
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I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.
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Task-based algorithms for SPH
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.

−→ Instead of traversing the tree for each
particle, we traverse a list of cells and cell pairs
and compute all interactions.
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Task-based algorithms for SPH
Hierarchical cell pairs

In a mutli-resolution setting, the initial
cell-based decomposition can be extremely
inefficient.

If the particles in a cell are sufficiently small, the
self-interaction task can be split.
Likewise, if the particles in a cell-pair are
sufficiently small, the task can be split as well.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.
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Task-based algorithms for SPH
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Each pair-interaction task depends on the sort
tasks of the cells involved.
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
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Task-based algorithms for SPH
Dynamic task allocation
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SWIFT tasks

Each core has it’s own task queue and uses work-stealing when empty.
Each core has a preference for tasks involving cells which were used previously
to improve cache re-use.
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Task-based algorithms for SPH
Parallel efficiency and scaling
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Gadget2

SWIFT

Parallel efficiency of 75% on 32 cores of an 4× Intel Xeon X7550
shared-memory machine.
No NUMA-related effects: Each task operates exclusively on a small
contiguous region of memory which usually fits in the lower level caches.
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Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.

Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.

Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .

Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.

I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.

I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.

Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.

Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.

Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Task-based algorithms for SPH
Further work

SWIFT is currently an Open-Source research code, but we aim to be able to do
production runs in Computational Cosmology.
Modular structure, easy to add new physics, kernel functions, etc. . .
Hybrid shared/distributed-memory parallelism:

I Distributed-memory parallelism between the nodes of a cluster,.
I Task-based shared-memory parallelism between the cores of a single node.
I SIMD/SIMT parallelism within each task on a single core.

In a task-based hybrid setup, sending and receiving data asynchronously can
be implemented as tasks to hide communication latencies.
Mixed-precision floating point arithmetic in order to better exploit SIMD
vectorization, yet without losing precision.
Tasks can also be shared between the CPU and a GPU.

Pedro Gonnet: SWIFT: Fast algorithms for SPH on multi-core architectures June 5th, 2013 12/14



Conclusions
Take-home messages

In order to continue getting faster, programs need to become more parallel.
−→ If a program has reached its maximum degree of parallelism, it won’t get
any faster. Ever.
On shared-memory systems, asynchronous task-based parallelism solves
most problems with concurrency and scaling.
−→ But we still need to develop task-based algorithms for specific problems,
e.g. SPH simulations.
Better algorithms alone can lead to speedups of up to a factor of ten.
−→ Better use of both existing and future infrastructure.

If you have an interesting problem, or just need a fast code, let us know!
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Conclusions
Thanks

Thank you for your attention!
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