\section{Equations} \subsection{Partition of Unity and Related Quantities} The partition of unity is defined as: \begin{align} \psi_i(\x) &= \frac{1}{\omega(\x)} W(\x - \x_i, h(\x)) \label{psi} \\ \omega(\x) &= \sum_j W(\x - \x_j, h(\x)) \label{omega} \end{align} where $h(\x)$ is some ``kernel size'' and $\omega(\x)$ is used to normalise the volume partition at any point $\x$. We use the compact support radius $H$ of the kernels as $h$. It can be shown that (provided $W(\x)$ is normalized, i.e. $\int_V W(\x) \D V = 1$): \begin{align} V_i &= \int_V \psi_i(\x) \de V = \frac{1}{\omega(\x_i)} \\ \label{psi_volume_integral} V &= \sum_i V_i \\ \int_V f(\x) \D V &= \sum_i f(\x_i) V_i + \mathcal{O}(h^2) \label{vol_integral_fx} \end{align} Eq. (\ref{vol_integral_fx}) can be derived by Taylor-expanding $f(\x)$ around $\x_i$ and integrating the first order term by parts to show that it is zero. \subsection{Meshless Hydrodynamics \`a la Hopkins} Following \cite{hopkinsGIZMONewClass2015}, we arrive at the equation \begin{equation} \frac{\D}{\D t} (V_i \U_{k,i}) + \sum_j \F_{k,ij} \cdot \Aijm = 0 \end{equation} with \begin{equation} \Aijm^\alpha = V_i \psitilde_j^\alpha (\x_i) - V_j\psitilde_i^\alpha (\x_j) \label{Hopkins} \end{equation} for every component $k$ of the Euler equations and every gradient component $\alpha$ The $\psitilde(\x)$ come from the $\mathcal{O}(h^2)$ accurate discrete gradient expression from \cite{lansonRenormalizedMeshfreeSchemes2008}: \begin{align} \frac{\del}{\del x_{\alpha}} f(\x) \big{|}_{\x_i} &= \sum_j \left( f(\x_j) - f(\x_i) \right) \psitilde_j^\alpha (\x_i) \\ \label{gradient} \psitilde_j^\alpha (\x_i) &= \sum_{\beta = 1}^{\beta=\nu} \mathbf{B}_i^{\alpha \beta} (\x_j - \x_i)^\beta \psi_j(\x_i) \\ \mathbf{B}_i &= \mathbf{E_i} ^ {-1} \\ \mathbf{E}_i^{\alpha \beta} &= \sum_j (\x_j - \x_i)^\alpha (\x_j - \x_i)^\beta \psi_j(\x_i) \end{align} where $\alpha$ and $\beta$ again represent the coordinate components for $\nu$ dimensions. \subsection{Meshless Hydrodynamics \`a la Ivanova} Following \cite{ivanovaCommonEnvelopeEvolution2013}, we arrive at the equation \begin{equation} \frac{\D}{\D t} (V_i \U_{k,i}) + \sum_j \F_{k,ij} \cdot \Aijm = 0 \end{equation} In the paper, no discrete expression for \Aij is given, instead: \begin{equation} \Aijm = \int_V \left[ \psi_j(\x) \nabla \psi_i(\x) - \psi_i(\x) \nabla \psi_j(\x) \right] \D V \end{equation} By Taylor-expanding the gradients of $\psi$ the volume integral can be discretised as: \begin{equation} \Aijm^\alpha = V_i \nabla^\alpha \psi_j (\x_i) - V_j \nabla^\alpha \psi_i (\x_j) + \mathcal{O}(h^2) \label{Ivanova} \end{equation} This time we get analytical gradients of $\psi$ instead of $\psitilde$. Note that the indices $i$ and $j$ in these equations are switched compared to the one given in \cite{ivanovaCommonEnvelopeEvolution2013} so that the evolution equations for Hopkins and Ivanova versions are identical.