\subsection{Cosmological factors for properties entering the artificial viscosity} \label{ssec:artificialvisc} There are multiple properties that enter into the more complex artificial viscosity schemes, such as those by \citet{Morris1997} (henceforth M\&M) and \citet{Cullen2010} (henceforth C\&D). \subsubsection{M\&M basic scheme} \label{sssec:mandm} This relies on the velocity divergence as a shock indicator, i.e. the property $\nabla \cdot \mathbf{v}$. The interpretation of this is the velocity divergence of the fluid overall, i.e. the physical velocity divergence. Starting with \begin{equation} \mathbf{v}_p = a \dot{\mathbf{r}}' + \dot{a} \mathbf{r}', \nonumber \end{equation} with the divergence, \begin{equation} \nabla \cdot \mathbf{v}_p = \nabla \cdot \left(a \dot{\mathbf{r}}'\right) + \nabla \cdot \left(\dot{a} \mathbf{r}'\right). \nonumber \end{equation} The quantity on the left is the one that we want to enter the source term for the artificial viscosity. Transforming to the co-moving derivative on the right hand side to enable it to be calculated in the code, \begin{equation} \nabla \cdot \mathbf{v}_p = \nabla' \cdot \dot{\mathbf{r}}' + n_d H(a), \label{eqn:divvwithcomovingcoordinates} \end{equation} with $n_d$ the number of spatial dimensions, and the final transformation being the one to internal code velocity units, \begin{equation} \nabla \cdot \mathbf{v}_p = \frac{1}{a^2} \nabla' \cdot \mathbf{v}' + n_d H(a). \label{eqn:divvcodeunits} \end{equation} We note that there is no similar hubble flow term in the expression for $\nabla \times \mathbf{v}_p$. In some more complex schemes, such as the one presented by \cite{Cullen2010}, the time differential of the velocity divergence is used as a way to differentiate the pre- and post-shock region. Building on the above, we take the time differential of both sides, \begin{equation} \frac{{\mathrm d}}{{\mathrm d} t} \nabla \cdot \mathbf{v}_p = \frac{{\mathrm d}}{{\mathrm d} t} \left( \frac{1}{a^2} \nabla' \cdot \mathbf{v}' + n_d H(a) \right). \nonumber \end{equation} Collecting the factors, we see \begin{align} \frac{{\mathrm d}}{{\mathrm d} t} \nabla \cdot \mathbf{v}_p = \frac{1}{a^2} &\left( \frac{{\mathrm d}}{{\mathrm d} t} \nabla ' \cdot \mathbf{v}' - 2H(a) \nabla' \cdot \mathbf{v}' \right) \\ + n_d &\left( \frac{\ddot{a}}{a} - \frac{\dot{a}}{a^2} \right). \label{eqn:divvdtcodeunits} \end{align} This looks like quite a mess, but in most cases we calculate this implicitly from the velocity divergence itself, and so we do not actually need to take into account these factors; i.e. we actually calculate \begin{equation} \frac{\mathrm d}{{\mathrm d} t} \nabla \cdot \mathbf{v}_p = \frac{ \nabla \cdot \mathbf{v}_p (t + {\mathrm d}t) - \nabla \cdot \mathbf{v}_p (t) }{dt}, \label{eqn:divvdtcodeunitsimplicit} \end{equation} meaning that the above is taken into account self-consistently.