/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller (schaller@strw.leidenuniv.nl).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* Config parameters. */
#include
/* Some standard headers. */
#include
#include
#include
#include
#include
/* Local headers. */
#include "swift.h"
#define ACC_THRESHOLD 1e-5
#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_branch_density
#define DOPAIR1 runner_dopair1_branch_density
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif
#ifndef DOSELF1
#define DOSELF1 runner_doself1_branch_density
#define DOSELF1_NAME "runner_doself1_density"
#endif
#ifndef DOPAIR1
#define DOPAIR1 runner_dopair1_branch_density
#define DOPAIR1_NAME "runner_dopair1_density"
#endif
#define NODE_ID 0
enum velocity_types {
velocity_zero,
velocity_random,
velocity_divergent,
velocity_rotating
};
/**
* @brief Constructs a cell and all of its particle in a valid state prior to
* a DOPAIR or DOSELF calcuation.
*
* @param n The cube root of the number of particles.
* @param offset The position of the cell offset from (0,0,0).
* @param size The cell size.
* @param h The smoothing length of the particles in units of the inter-particle
*separation.
* @param density The density of the fluid.
* @param partId The running counter of IDs.
* @param pert The perturbation to apply to the particles in the cell in units
*of the inter-particle separation.
* @param vel The type of velocity field (0, random, divergent, rotating)
*/
struct cell *make_cell(size_t n, double *offset, double size, double h,
double density, long long *partId, double pert,
enum velocity_types vel) {
const size_t count = n * n * n;
const double volume = size * size * size;
struct cell *cell = NULL;
if (posix_memalign((void **)&cell, cell_align, sizeof(struct cell)) != 0) {
error("couldn't allocate cell");
}
bzero(cell, sizeof(struct cell));
if (posix_memalign((void **)&cell->hydro.parts, part_align,
count * sizeof(struct part)) != 0) {
error("couldn't allocate particles, no. of particles: %d", (int)count);
}
bzero(cell->hydro.parts, count * sizeof(struct part));
float h_max = 0.f;
/* Construct the parts */
struct part *part = cell->hydro.parts;
for (size_t x = 0; x < n; ++x) {
for (size_t y = 0; y < n; ++y) {
for (size_t z = 0; z < n; ++z) {
part->x[0] =
offset[0] +
size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[1] =
offset[1] +
size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[2] =
offset[2] +
size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
switch (vel) {
case velocity_zero:
part->v[0] = 0.f;
part->v[1] = 0.f;
part->v[2] = 0.f;
break;
case velocity_random:
part->v[0] = random_uniform(-0.05, 0.05);
part->v[1] = random_uniform(-0.05, 0.05);
part->v[2] = random_uniform(-0.05, 0.05);
break;
case velocity_divergent:
part->v[0] = part->x[0] - 1.5 * size;
part->v[1] = part->x[1] - 1.5 * size;
part->v[2] = part->x[2] - 1.5 * size;
break;
case velocity_rotating:
part->v[0] = part->x[1];
part->v[1] = -part->x[0];
part->v[2] = 0.f;
break;
}
part->h = size * h / (float)n;
h_max = fmax(h_max, part->h);
part->id = ++(*partId);
part->depth_h = 0;
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
part->conserved.mass = density * volume / count;
#else
part->mass = density * volume / count;
#endif
#if defined(HOPKINS_PE_SPH)
part->entropy = 1.f;
part->entropy_one_over_gamma = 1.f;
#endif
part->time_bin = 1;
#ifdef SWIFT_DEBUG_CHECKS
part->ti_drift = 8;
part->ti_kick = 8;
#endif
++part;
}
}
}
/* Cell properties */
cell->split = 0;
cell->depth = 0;
cell->hydro.h_max = h_max;
cell->hydro.h_max_active = h_max;
cell->hydro.count = count;
cell->hydro.dx_max_part = 0.;
cell->hydro.dx_max_sort = 0.;
cell->width[0] = size;
cell->width[1] = size;
cell->width[2] = size;
cell->dmin = size;
cell->loc[0] = offset[0];
cell->loc[1] = offset[1];
cell->loc[2] = offset[2];
cell->h_min_allowed = cell->dmin * 0.5 * (1. / kernel_gamma);
cell->h_max_allowed = cell->dmin * (1. / kernel_gamma);
cell->hydro.super = cell;
cell->hydro.ti_old_part = 8;
cell->hydro.ti_end_min = 8;
cell->nodeID = NODE_ID;
shuffle_particles(cell->hydro.parts, cell->hydro.count);
cell->hydro.sorted = 0;
cell->hydro.sort = NULL;
return cell;
}
void clean_up(struct cell *ci) {
free(ci->hydro.parts);
free(ci->hydro.sort);
free(ci);
}
/**
* @brief Initializes all particles field to be ready for a density calculation
*/
void zero_particle_fields(struct cell *c) {
for (int pid = 0; pid < c->hydro.count; pid++) {
hydro_init_part(&c->hydro.parts[pid], NULL);
adaptive_softening_init_part(&c->hydro.parts[pid]);
mhd_init_part(&c->hydro.parts[pid]);
}
}
/**
* @brief Ends the loop by adding the appropriate coefficients
*/
void end_calculation(struct cell *c, const struct cosmology *cosmo,
const struct gravity_props *gravity_props) {
for (int pid = 0; pid < c->hydro.count; pid++) {
hydro_end_density(&c->hydro.parts[pid], cosmo);
adaptive_softening_end_density(&c->hydro.parts[pid], gravity_props);
mhd_end_density(&c->hydro.parts[pid], cosmo);
}
}
/**
* @brief Dump all the particles to a file
*/
void dump_particle_fields(char *fileName, struct cell *main_cell, int i, int j,
int k) {
FILE *file = fopen(fileName, "a");
/* Write header */
fprintf(file,
"# %4s %10s %10s %10s %10s %10s %10s %13s %13s %13s %13s %13s "
"%13s %13s %13s\n",
"ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "rho", "rho_dh",
"wcount", "wcount_dh", "div_v", "curl_vx", "curl_vy", "curl_vz");
fprintf(file, "# Centre cell at (i,j,k)=(%d, %d, %d) ---------------------\n",
i, j, k);
/* Write main cell */
for (int pid = 0; pid < main_cell->hydro.count; pid++) {
fprintf(file,
"%6llu %10f %10f %10f %10f %10f %10f %13e %13e %13e %13e %13e "
"%13e %13e %13e\n",
main_cell->hydro.parts[pid].id, main_cell->hydro.parts[pid].x[0],
main_cell->hydro.parts[pid].x[1], main_cell->hydro.parts[pid].x[2],
main_cell->hydro.parts[pid].v[0], main_cell->hydro.parts[pid].v[1],
main_cell->hydro.parts[pid].v[2],
hydro_get_comoving_density(&main_cell->hydro.parts[pid]),
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH)
0.f,
#else
main_cell->hydro.parts[pid].density.rho_dh,
#endif
main_cell->hydro.parts[pid].density.wcount,
main_cell->hydro.parts[pid].density.wcount_dh,
#if defined(GADGET2_SPH) || defined(HOPKINS_PE_SPH)
main_cell->hydro.parts[pid].density.div_v,
main_cell->hydro.parts[pid].density.rot_v[0],
main_cell->hydro.parts[pid].density.rot_v[1],
main_cell->hydro.parts[pid].density.rot_v[2]
#elif defined(PHANTOM_SPH) || defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH)
main_cell->hydro.parts[pid].viscosity.div_v,
main_cell->hydro.parts[pid].density.rot_v[0],
main_cell->hydro.parts[pid].density.rot_v[1],
main_cell->hydro.parts[pid].density.rot_v[2]
#else
0., 0., 0., 0.
#endif
);
}
fclose(file);
}
/**
* @brief Compares the vectorised result against
* the serial result of the interaction.
*
* @param serial_parts Particle array that has been interacted serially
* @param vec_parts Particle array to be interacted using vectors
* @param count No. of particles that have been interacted
* @param threshold Level of accuracy needed
*
* @return Non-zero value if difference found, 0 otherwise
*/
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
double threshold) {
int result = 0;
for (int i = 0; i < count; i++)
result += compare_particles(&serial_parts[i], &vec_parts[i], threshold);
return result;
}
/* Just a forward declaration... */
void runner_doself1_density_vec(struct runner *r, struct cell *ci);
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
struct cell *cj, int limit_h_min,
int limit_h_max);
void runner_doself1_branch_density(struct runner *r, struct cell *c,
int limit_h_min, int limit_h_max);
void test_boundary_conditions(struct cell **cells, struct runner *runner,
const int loc_i, const int loc_j, const int loc_k,
const int dim, char *swiftOutputFileName,
char *bruteForceOutputFileName) {
/* Store the main cell for future use */
struct cell *main_cell = cells[loc_i * (dim * dim) + loc_j * dim + loc_k];
/* Zero the fields */
for (int j = 0; j < dim * dim * dim; ++j) zero_particle_fields(cells[j]);
/* Run all the pairs */
#ifdef WITH_VECTORIZATION
runner->ci_cache.count = 0;
cache_init(&runner->ci_cache, 512);
runner->cj_cache.count = 0;
cache_init(&runner->cj_cache, 512);
#endif
/* Now loop over all the neighbours of this cell
* and perform the pair interactions. */
for (int ii = -1; ii < 2; ii++) {
int iii = loc_i + ii;
iii = (iii + dim) % dim;
for (int jj = -1; jj < 2; jj++) {
int jjj = loc_j + jj;
jjj = (jjj + dim) % dim;
for (int kk = -1; kk < 2; kk++) {
int kkk = loc_k + kk;
kkk = (kkk + dim) % dim;
/* Get the neighbouring cell */
struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
if (cj != main_cell)
DOPAIR1(runner, main_cell, cj, /*limit_h_min=*/0,
/*limit_h_max=*/0);
}
}
}
/* And now the self-interaction */
DOSELF1(runner, main_cell, /*limit_h_min=*/0,
/*limit_h_max=*/0);
/* Let's get physical ! */
end_calculation(main_cell, runner->e->cosmology,
runner->e->gravity_properties);
/* Dump particles from the main cell. */
dump_particle_fields(swiftOutputFileName, main_cell, loc_i, loc_j, loc_k);
/* Now perform a brute-force version for accuracy tests */
/* Zero the fields */
for (int i = 0; i < dim * dim * dim; ++i) zero_particle_fields(cells[i]);
/* Now loop over all the neighbours of this cell
* and perform the pair interactions. */
for (int ii = -1; ii < 2; ii++) {
int iii = loc_i + ii;
iii = (iii + dim) % dim;
for (int jj = -1; jj < 2; jj++) {
int jjj = loc_j + jj;
jjj = (jjj + dim) % dim;
for (int kk = -1; kk < 2; kk++) {
int kkk = loc_k + kk;
kkk = (kkk + dim) % dim;
/* Get the neighbouring cell */
struct cell *cj = cells[iii * (dim * dim) + jjj * dim + kkk];
if (cj != main_cell) pairs_all_density(runner, main_cell, cj);
}
}
}
/* And now the self-interaction */
self_all_density(runner, main_cell);
/* Let's get physical ! */
end_calculation(main_cell, runner->e->cosmology,
runner->e->gravity_properties);
/* Dump */
dump_particle_fields(bruteForceOutputFileName, main_cell, loc_i, loc_j,
loc_k);
}
/* And go... */
int main(int argc, char *argv[]) {
#ifdef HAVE_SETAFFINITY
engine_pin();
#endif
size_t runs = 0, particles = 0;
double h = 1.23485, size = 1., rho = 1.;
double perturbation = 0.;
double threshold = ACC_THRESHOLD;
char outputFileNameExtension[100] = "";
char swiftOutputFileName[200] = "";
char bruteForceOutputFileName[200] = "";
enum velocity_types vel = velocity_zero;
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FP-exceptions */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
/* Get some randomness going */
srand(0);
int c;
while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:a:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 's':
sscanf(optarg, "%lf", &size);
break;
case 'n':
sscanf(optarg, "%zu", &particles);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case 'd':
sscanf(optarg, "%lf", &perturbation);
break;
case 'm':
sscanf(optarg, "%lf", &rho);
break;
case 'f':
strcpy(outputFileNameExtension, optarg);
break;
case 'v':
sscanf(optarg, "%d", (int *)&vel);
break;
case 'a':
sscanf(optarg, "%lf", &threshold);
break;
case '?':
error("Unknown option.");
break;
}
}
if (h < 0 || particles == 0 || runs == 0) {
printf(
"\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
"\nGenerates 27 cells, filled with particles on a Cartesian grid."
"\nThese are then interacted using runner_dopair1_density() and "
"runner_doself1_density()."
"\n\nOptions:"
"\n-h DISTANCE=1.2348 - Smoothing length in units of "
"\n-m rho - Physical density in the cell"
"\n-s size - Physical size of the cell"
"\n-d pert - Perturbation to apply to the particles [0,1["
"\n-v type (0,1,2,3) - Velocity field: (zero, random, divergent, "
"rotating)"
"\n-f fileName - Part of the file name used to save the dumps\n",
argv[0]);
exit(1);
}
/* Help users... */
message("DOSELF1 function called: %s", DOSELF1_NAME);
message("DOPAIR1 function called: %s", DOPAIR1_NAME);
message("Vector size: %d", VEC_SIZE);
message("Adiabatic index: ga = %f", hydro_gamma);
message("Hydro implementation: %s", SPH_IMPLEMENTATION);
message("Smoothing length: h = %f", h * size);
message("Kernel: %s", kernel_name);
message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm);
message("Density target: rho = %f", rho);
message("div_v target: div = %f", vel == 2 ? 3.f : 0.f);
message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f);
printf("\n");
/* Build the infrastructure */
const int dim = 8;
struct space space;
space.periodic = 1;
space.dim[0] = dim;
space.dim[1] = dim;
space.dim[2] = dim;
struct hydro_props hp;
hp.h_max = FLT_MAX;
struct engine engine;
engine.s = &space;
engine.time = 0.1f;
engine.ti_current = 8;
engine.max_active_bin = num_time_bins;
engine.hydro_properties = &hp;
engine.nodeID = NODE_ID;
struct phys_const prog_const;
prog_const.const_vacuum_permeability = 1.0;
engine.physical_constants = &prog_const;
struct runner real_runner;
struct runner *runner = &real_runner;
runner->e = &engine;
struct cosmology cosmo;
cosmology_init_no_cosmo(&cosmo);
engine.cosmology = &cosmo;
struct lightcone_array_props lightcone_array_properties;
lightcone_array_properties.nr_lightcones = 0;
engine.lightcone_array_properties = &lightcone_array_properties;
struct pressure_floor_props pressure_floor;
engine.pressure_floor_props = &pressure_floor;
struct sink_props sink_props;
bzero(&sink_props, sizeof(struct sink_props));
engine.sink_properties = &sink_props;
struct gravity_props gravity_props;
bzero(&gravity_props, sizeof(struct gravity_props));
gravity_props.G_Newton = 1.f;
engine.gravity_properties = &gravity_props;
/* Construct some cells */
struct cell *cells[dim * dim * dim];
static long long partId = 0;
for (int i = 0; i < dim; ++i) {
for (int j = 0; j < dim; ++j) {
for (int k = 0; k < dim; ++k) {
double offset[3] = {i * size, j * size, k * size};
cells[i * (dim * dim) + j * dim + k] = make_cell(
particles, offset, size, h, rho, &partId, perturbation, vel);
runner_do_drift_part(runner, cells[i * (dim * dim) + j * dim + k], 0);
runner_do_hydro_sort(runner, cells[i * (dim * dim) + j * dim + k],
0x1FFF, 0, 0, 0, 0);
}
}
}
/* Create output file names. */
sprintf(swiftOutputFileName, "swift_periodic_BC_%.150s.dat",
outputFileNameExtension);
sprintf(bruteForceOutputFileName, "brute_force_periodic_BC_%.150s.dat",
outputFileNameExtension);
/* Delete files if they already exist. */
remove(swiftOutputFileName);
remove(bruteForceOutputFileName);
const int half_dim = (dim - 1) / 2;
/* Test the periodic boundary conditions for each of the 8 corners. Interact
* each corner with all of its 26 neighbours.*/
test_boundary_conditions(cells, runner, 0, 0, 0, dim, swiftOutputFileName,
bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, 0, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, 0, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, 0, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, dim - 1, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, dim - 1, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, dim - 1, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, dim - 1, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
/* Test the boundary conditions for cells at the centre of each face of the
* box. */
test_boundary_conditions(cells, runner, half_dim, half_dim, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, half_dim, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, half_dim, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, half_dim, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, 0, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, dim - 1, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
/* Test the boundary conditions for cells at the centre of each edge of the
* box. */
test_boundary_conditions(cells, runner, half_dim, dim - 1, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, dim - 1, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, dim - 1, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, dim - 1, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, half_dim, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, half_dim, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, half_dim, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, half_dim, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, 0, 0, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, dim - 1, 0, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, half_dim, 0, dim - 1, dim,
swiftOutputFileName, bruteForceOutputFileName);
test_boundary_conditions(cells, runner, 0, 0, half_dim, dim,
swiftOutputFileName, bruteForceOutputFileName);
/* Clean things to make the sanitizer happy ... */
for (int i = 0; i < dim * dim * dim; ++i) clean_up(cells[i]);
return 0;
}