/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl)
* James Willis (james.s.willis@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#include
/* Local includes. */
#include "align.h"
#include "kernel_hydro.h"
#include "vector.h"
/* System includes. */
#include
#include
#include
const int numPoints = (1 << 28);
int main(int argc, char *argv[]) {
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
const float h = 1.2348f;
float *u, *W, *dW;
if (posix_memalign((void **)&u, SWIFT_CACHE_ALIGNMENT,
numPoints * sizeof(float)) != 0)
error("Error allocating u");
if (posix_memalign((void **)&W, SWIFT_CACHE_ALIGNMENT,
numPoints * sizeof(float)) != 0)
error("Error allocating W");
if (posix_memalign((void **)&dW, SWIFT_CACHE_ALIGNMENT,
numPoints * sizeof(float)) != 0)
error("Error allocating dW");
message("Serial Output");
message("-------------");
const float numPoints_inv = 1. / numPoints;
for (int i = 0; i < numPoints; ++i)
u[i] = i * 1.2f * kernel_gamma * numPoints_inv / h;
for (int i = 0; i < numPoints; ++i) {
kernel_deval(u[i], &W[i], &dW[i]);
if (W[i] < 0.f) error("Kernel is negative u=%e W=%e", u[i], W[i]);
if (dW[i] > 0.f)
error("Kernel derivatibe is positive u=%e dW=%e", u[i], dW[i]);
}
/* Test some additional special cases */
float Wtest, dWtest;
kernel_deval(1.930290, &Wtest, &dWtest);
if (Wtest < 0.f) error("Kernel is negative u=%e W=%e", 1.930290, Wtest);
if (dWtest > 0.f)
error("Kernel derivative is positive u=%e dW=%e", 1.930290, dWtest);
#ifdef WITH_VECTORIZATION
message("Vector Output for VEC_SIZE=%d", VEC_SIZE);
message("-------------");
message("Vector Output for kernel_deval_1_vec");
message("-------------");
/* Test vectorised kernel that uses one vector. */
for (int i = 0; i < numPoints; i += VEC_SIZE) {
vector vx, vx_h;
vector W_vec, dW_vec;
for (int j = 0; j < VEC_SIZE; j++)
vx.f[j] = (i + j) * 1.2f * kernel_gamma / numPoints;
vx_h.v = vec_mul(vx.v, vec_set1(1.f / h));
kernel_deval_1_vec(&vx_h, &W_vec, &dW_vec);
for (int j = 0; j < VEC_SIZE; j++) {
/* message("%2d: h= %f H= %f x=%f W(x,h)=%f dW(x,h)=%f\n", i + j, h, */
/* h * kernel_gamma, vx.f[j], W_vec.f[j], dW_vec.f[j]); */
if (W_vec.f[j] < 0.f)
error("Kernel is negative u=%e W=%e", u[i + j], W_vec.f[j]);
if (dW_vec.f[j] > 0.f)
error("Kernel derivative is positive u=%e dW=%e", u[i + j],
dW_vec.f[j]);
if (fabsf(W_vec.f[j] - W[i + j]) > 2e-6)
error("Invalid Wvalue ! scalar= %e, vector= %e\n", W[i + j],
W_vec.f[j]);
if (fabsf(dW_vec.f[j] - dW[i + j]) > 2e-6)
error("Invalid dW value ! scalar= %e, vector= %e %e %e\n", dW[i + j],
dW_vec.f[j], fabsf(dW_vec.f[j] - dW[i + j]), fabsf(dW[i + j]));
}
}
message("Vector Output for kernel_deval_2_vec");
message("-------------");
/* Test vectorised kernel that uses two vectors. */
for (int i = 0; i < numPoints; i += VEC_SIZE) {
vector vx, vx_h;
vector W_vec, dW_vec;
vector vx_2, vx_h_2;
vector W_vec_2, dW_vec_2;
for (int j = 0; j < VEC_SIZE; j++) {
vx.f[j] = (i + j) * 1.2f * kernel_gamma / numPoints;
vx_2.f[j] = (i + j) * 1.2f * kernel_gamma / numPoints;
}
vx_h.v = vec_mul(vx.v, vec_set1(1.f / h));
vx_h_2.v = vec_mul(vx_2.v, vec_set1(1.f / h));
kernel_deval_2_vec(&vx_h, &W_vec, &dW_vec, &vx_h_2, &W_vec_2, &dW_vec_2);
/* Check first vector results. */
for (int j = 0; j < VEC_SIZE; j++) {
/* message("%2d: h= %f H= %f x=%f W(x,h)=%f dW(x,h)=%f\n", i + j, h, */
/* h * kernel_gamma, vx.f[j], W_vec.f[j], dW_vec.f[j]); */
if (W_vec.f[j] < 0.f)
error("Kernel is negative u=%e W=%e", u[i + j], W_vec.f[j]);
if (dW_vec.f[j] > 0.f)
error("Kernel derivative is positive u=%e dW=%e", u[i + j],
dW_vec.f[j]);
if (fabsf(W_vec.f[j] - W[i + j]) > 2e-6)
error("Invalid value ! scalar= %e, vector= %e\n", W[i + j], W_vec.f[j]);
if (fabsf(dW_vec.f[j] - dW[i + j]) > 2e-6)
error("Invalid value ! scalar= %e, vector= %e\n", dW[i + j],
dW_vec.f[j]);
}
/* Check second vector results. */
for (int j = 0; j < VEC_SIZE; j++) {
/* message("%2d: h= %f H= %f x=%f W(x,h)=%f dW(x,h)=%f\n", i + j, h, */
/* h * kernel_gamma, vx_2.f[j], W_vec_2.f[j], dW_vec_2.f[j]); */
if (W_vec_2.f[j] < 0.f)
error("Kernel is negative u=%e W=%e", u[i + j], W_vec_2.f[j]);
if (dW_vec_2.f[j] > 0.f)
error("Kernel derivative is positive u=%e dW=%e", u[i + j],
dW_vec_2.f[j]);
if (fabsf(W_vec_2.f[j] - W[i + j]) > 2e-6)
error("Invalid value ! scalar= %e, vector= %e\n", W[i + j],
W_vec_2.f[j]);
if (fabsf(dW_vec_2.f[j] - dW[i + j]) > 2e-6)
error("Invalid value ! scalar= %e, vector= %e\n", dW[i + j],
dW_vec_2.f[j]);
}
}
message("All values are consistent");
#endif
free(u);
free(W);
free(dW);
return 0;
}