/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2019 Loic Hausammann (loic.hausammann@epfl.ch) * 2019 Fabien Jeanquartier (fabien.jeanquartier@epfl.ch) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_STAR_FORMATION_GEAR_IO_H #define SWIFT_STAR_FORMATION_GEAR_IO_H /* Config parameters. */ #include /* Local includes */ #include "io_properties.h" /** * @brief Specifies which s-particle fields to read from a dataset * * @param sparts The s-particle array. * @param list The list of i/o properties to read. * * @return num_fields The number of i/o fields to read. */ INLINE static int star_formation_read_particles(struct spart* sparts, struct io_props* list) { /* List what we want to read */ list[0] = io_make_input_field("BirthMass", FLOAT, 1, OPTIONAL, UNIT_CONV_MASS, sparts, sf_data.birth_mass); return 1; } /** * @brief Specifies which particle fields to write to a dataset * * @param parts The particle array. * @param xparts The extended data particle array. * @param list The list of i/o properties to write. * * @return Returns the number of fields to write. */ __attribute__((always_inline)) INLINE static int star_formation_write_particles( const struct part* parts, const struct xpart* xparts, struct io_props* list) { /* Nothing to write here */ return 0; } /** * @brief Specifies which sparticle fields to write to a dataset * * @param sparts The star particle array. * @param list The list of i/o properties to write. * * @return Returns the number of fields to write. */ __attribute__((always_inline)) INLINE static int star_formation_write_sparticles(const struct spart* sparts, struct io_props* list) { list[0] = io_make_physical_output_field( "BirthDensities", FLOAT, 1, UNIT_CONV_DENSITY, 0.f, sparts, sf_data.birth_density, /*can convert to comoving=*/0, "Physical densities at the time of birth of the gas particles that " "turned into stars (note that " "we store the physical density at the birth redshift, no conversion is " "needed)"); list[1] = io_make_physical_output_field( "BirthTemperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, sparts, sf_data.birth_temperature, /*can convert to comoving=*/0, "Temperatures at the time of birth of the gas " "particles that turned into stars"); list[2] = io_make_output_field("BirthMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f, sparts, sf_data.birth_mass, "Masses of the star particles at birth time"); list[3] = io_make_output_field( "ProgenitorIDs", LONGLONG, 1, UNIT_CONV_NO_UNITS, 0.f, sparts, sf_data.progenitor_id, "Unique IDs of the progenitor particle"); return 4; } /** * @brief initialization of the star formation law * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param hydro_props The #hydro_props. * @param cosmo The current cosmological model. * @param entropy_floor The properties of the entropy floor used in this * simulation. * @param starform the star formation law properties to initialize */ INLINE static void starformation_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct hydro_props* hydro_props, const struct cosmology* cosmo, const struct entropy_floor_properties* entropy_floor, struct star_formation* starform) { const char* default_mode = "default"; char temp[32]; parser_get_opt_param_string(parameter_file, "GEARStarFormation:star_formation_mode", temp, default_mode); /* Star formation mode */ if (strcmp(temp, "default") == 0) { starform->star_formation_mode = gear_star_formation_default; } else if (strcmp(temp, "agora") == 0) { starform->star_formation_mode = gear_star_formation_agora; } else { error("Invalid star formation model: '%s'", temp); } /* Star formation efficiency */ starform->star_formation_efficiency = parser_get_param_double( parameter_file, "GEARStarFormation:star_formation_efficiency"); /* Maximum gas temperature for star formation */ starform->maximal_temperature = parser_get_param_double( parameter_file, "GEARStarFormation:maximal_temperature_K"); /* Minimal gas density for star formation */ starform->density_threshold = parser_get_param_double( parameter_file, "GEARStarFormation:density_threshold_Hpcm3"); /* Number of stars per particles */ starform->n_stars_per_part = parser_get_param_double( parameter_file, "GEARStarFormation:n_stars_per_particle"); /* Minimal fraction of mass for the last star formed. */ starform->min_mass_frac_plus_one = parser_get_param_double( parameter_file, "GEARStarFormation:min_mass_frac"); /* Avoid generating gas particle with mass below the fraction => + 1. */ starform->min_mass_frac_plus_one += 1.; /* Get the jeans factor */ starform->n_jeans_2_3 = parser_get_param_float(parameter_file, "GEARPressureFloor:jeans_factor"); starform->n_jeans_2_3 = pow(starform->n_jeans_2_3, 2. / 3.); /* Apply unit change */ starform->maximal_temperature /= units_cgs_conversion_factor(us, UNIT_CONV_TEMPERATURE); const double m_p_cgs = phys_const->const_proton_mass * units_cgs_conversion_factor(us, UNIT_CONV_MASS); starform->density_threshold *= m_p_cgs / units_cgs_conversion_factor(us, UNIT_CONV_DENSITY); /* Initialize the mass of the stars to 0 for the stats computation */ starform->mass_stars = 0; /* Print parameters */ if (engine_rank == 0) { message("star_formation_mode = %d", starform->star_formation_mode); message("star_formation_efficiency = %g", starform->star_formation_efficiency); message("maximal_temperature = %g", starform->maximal_temperature); message("density_threshold = %g", starform->density_threshold); message("n_stars_per_part = %d", starform->n_stars_per_part); message("min_mass_frac_plus_one = %g", starform->min_mass_frac_plus_one); message("n_jeans_2_3 = %g", starform->n_jeans_2_3); } } #endif /* SWIFT_STAR_FORMATION_GEAR_IO_H */