/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2019 Loic Hausammann (loic.hausammann@epfl.ch)
* 2019 Fabien Jeanquartier (fabien.jeanquartier@epfl.ch)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_STAR_FORMATION_GEAR_IO_H
#define SWIFT_STAR_FORMATION_GEAR_IO_H
/* Config parameters. */
#include
/* Local includes */
#include "io_properties.h"
/**
* @brief Specifies which s-particle fields to read from a dataset
*
* @param sparts The s-particle array.
* @param list The list of i/o properties to read.
*
* @return num_fields The number of i/o fields to read.
*/
INLINE static int star_formation_read_particles(struct spart* sparts,
struct io_props* list) {
/* List what we want to read */
list[0] = io_make_input_field("BirthMass", FLOAT, 1, OPTIONAL, UNIT_CONV_MASS,
sparts, sf_data.birth_mass);
return 1;
}
/**
* @brief Specifies which particle fields to write to a dataset
*
* @param parts The particle array.
* @param xparts The extended data particle array.
* @param list The list of i/o properties to write.
*
* @return Returns the number of fields to write.
*/
__attribute__((always_inline)) INLINE static int star_formation_write_particles(
const struct part* parts, const struct xpart* xparts,
struct io_props* list) {
/* Nothing to write here */
return 0;
}
/**
* @brief Specifies which sparticle fields to write to a dataset
*
* @param sparts The star particle array.
* @param list The list of i/o properties to write.
*
* @return Returns the number of fields to write.
*/
__attribute__((always_inline)) INLINE static int
star_formation_write_sparticles(const struct spart* sparts,
struct io_props* list) {
list[0] = io_make_physical_output_field(
"BirthDensities", FLOAT, 1, UNIT_CONV_DENSITY, 0.f, sparts,
sf_data.birth_density, /*can convert to comoving=*/0,
"Physical densities at the time of birth of the gas particles that "
"turned into stars (note that "
"we store the physical density at the birth redshift, no conversion is "
"needed)");
list[1] = io_make_physical_output_field(
"BirthTemperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, sparts,
sf_data.birth_temperature, /*can convert to comoving=*/0,
"Temperatures at the time of birth of the gas "
"particles that turned into stars");
list[2] = io_make_output_field("BirthMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f,
sparts, sf_data.birth_mass,
"Masses of the star particles at birth time");
list[3] = io_make_output_field(
"ProgenitorIDs", LONGLONG, 1, UNIT_CONV_NO_UNITS, 0.f, sparts,
sf_data.progenitor_id, "Unique IDs of the progenitor particle");
return 4;
}
/**
* @brief initialization of the star formation law
*
* @param parameter_file The parsed parameter file
* @param phys_const Physical constants in internal units
* @param us The current internal system of units
* @param hydro_props The #hydro_props.
* @param cosmo The current cosmological model.
* @param entropy_floor The properties of the entropy floor used in this
* simulation.
* @param starform the star formation law properties to initialize
*/
INLINE static void starformation_init_backend(
struct swift_params* parameter_file, const struct phys_const* phys_const,
const struct unit_system* us, const struct hydro_props* hydro_props,
const struct cosmology* cosmo,
const struct entropy_floor_properties* entropy_floor,
struct star_formation* starform) {
const char* default_mode = "default";
char temp[32];
parser_get_opt_param_string(parameter_file,
"GEARStarFormation:star_formation_mode", temp,
default_mode);
/* Star formation mode */
if (strcmp(temp, "default") == 0) {
starform->star_formation_mode = gear_star_formation_default;
} else if (strcmp(temp, "agora") == 0) {
starform->star_formation_mode = gear_star_formation_agora;
} else {
error("Invalid star formation model: '%s'", temp);
}
/* Star formation efficiency */
starform->star_formation_efficiency = parser_get_param_double(
parameter_file, "GEARStarFormation:star_formation_efficiency");
/* Maximum gas temperature for star formation */
starform->maximal_temperature = parser_get_param_double(
parameter_file, "GEARStarFormation:maximal_temperature_K");
/* Minimal gas density for star formation */
starform->density_threshold = parser_get_param_double(
parameter_file, "GEARStarFormation:density_threshold_Hpcm3");
/* Number of stars per particles */
starform->n_stars_per_part = parser_get_param_double(
parameter_file, "GEARStarFormation:n_stars_per_particle");
/* Minimal fraction of mass for the last star formed. */
starform->min_mass_frac_plus_one = parser_get_param_double(
parameter_file, "GEARStarFormation:min_mass_frac");
/* Avoid generating gas particle with mass below the fraction => + 1. */
starform->min_mass_frac_plus_one += 1.;
/* Get the jeans factor */
starform->n_jeans_2_3 =
parser_get_param_float(parameter_file, "GEARPressureFloor:jeans_factor");
starform->n_jeans_2_3 = pow(starform->n_jeans_2_3, 2. / 3.);
/* Apply unit change */
starform->maximal_temperature /=
units_cgs_conversion_factor(us, UNIT_CONV_TEMPERATURE);
const double m_p_cgs = phys_const->const_proton_mass *
units_cgs_conversion_factor(us, UNIT_CONV_MASS);
starform->density_threshold *=
m_p_cgs / units_cgs_conversion_factor(us, UNIT_CONV_DENSITY);
/* Initialize the mass of the stars to 0 for the stats computation */
starform->mass_stars = 0;
/* Print parameters */
if (engine_rank == 0) {
message("star_formation_mode = %d", starform->star_formation_mode);
message("star_formation_efficiency = %g",
starform->star_formation_efficiency);
message("maximal_temperature = %g", starform->maximal_temperature);
message("density_threshold = %g", starform->density_threshold);
message("n_stars_per_part = %d", starform->n_stars_per_part);
message("min_mass_frac_plus_one = %g", starform->min_mass_frac_plus_one);
message("n_jeans_2_3 = %g", starform->n_jeans_2_3);
}
}
#endif /* SWIFT_STAR_FORMATION_GEAR_IO_H */