/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk)
* Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_POTENTIAL_POINT_MASS_H
#define SWIFT_POTENTIAL_POINT_MASS_H
/* Config parameters. */
#include
/* Some standard headers. */
#include
#include
/* Local includes. */
#include "error.h"
#include "gravity.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "space.h"
#include "units.h"
/**
* @brief External Potential Properties - Point mass case
*/
struct external_potential {
/*! Position of the point mass */
double x[3];
/*! Mass */
double mass;
/*! Time-step condition pre-factor */
float timestep_mult;
};
/**
* @brief Computes the time-step due to the acceleration from a point mass
*
* We pass in the time for simulations where the potential evolves with time.
*
* @param time The current time.
* @param potential The properties of the externa potential.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static float external_gravity_timestep(
double time, const struct external_potential* restrict potential,
const struct phys_const* restrict phys_const,
const struct gpart* restrict g) {
const float G_newton = phys_const->const_newton_G;
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz);
const float rinv2 = rinv * rinv;
const float rinv3 = rinv2 * rinv;
const float drdv = (g->x[0] - potential->x[0]) * (g->v_full[0]) +
(g->x[1] - potential->x[1]) * (g->v_full[1]) +
(g->x[2] - potential->x[2]) * (g->v_full[2]);
const float dota_x = G_newton * potential->mass * rinv3 *
(-g->v_full[0] + 3.f * rinv2 * drdv * dx);
const float dota_y = G_newton * potential->mass * rinv3 *
(-g->v_full[1] + 3.f * rinv2 * drdv * dy);
const float dota_z = G_newton * potential->mass * rinv3 *
(-g->v_full[2] + 3.f * rinv2 * drdv * dz);
const float dota_2 = dota_x * dota_x + dota_y * dota_y + dota_z * dota_z;
const float a_2 = g->a_grav[0] * g->a_grav[0] + g->a_grav[1] * g->a_grav[1] +
g->a_grav[2] * g->a_grav[2];
if (fabsf(dota_2) > 0.f)
return potential->timestep_mult * sqrtf(a_2 / dota_2);
else
return FLT_MAX;
}
/**
* @brief Computes the gravitational acceleration of a particle due to a
* point mass
*
* Note that the accelerations are multiplied by Newton's G constant later
* on.
*
* We pass in the time for simulations where the potential evolves with time.
*
* @param time The current time.
* @param potential The proerties of the external potential.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static void external_gravity_acceleration(
double time, const struct external_potential* restrict potential,
const struct phys_const* restrict phys_const, struct gpart* restrict g) {
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz);
const float rinv3 = rinv * rinv * rinv;
g->a_grav[0] += -potential->mass * dx * rinv3;
g->a_grav[1] += -potential->mass * dy * rinv3;
g->a_grav[2] += -potential->mass * dz * rinv3;
gravity_add_comoving_potential(g, -potential->mass * rinv);
}
/**
* @brief Computes the gravitational potential energy of a particle in a point
* mass potential.
*
* @param time The current time (unused here).
* @param potential The #external_potential used in the run.
* @param phys_const Physical constants in internal units.
* @param g Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
external_gravity_get_potential_energy(
double time, const struct external_potential* potential,
const struct phys_const* const phys_const, const struct gpart* g) {
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz);
return -phys_const->const_newton_G * potential->mass * rinv;
}
/**
* @brief Initialises the external potential properties in the internal system
* of units.
*
* @param parameter_file The parsed parameter file
* @param phys_const Physical constants in internal units
* @param us The current internal system of units
* @param s The #space we run in.
* @param potential The external potential properties to initialize
*/
static INLINE void potential_init_backend(
struct swift_params* parameter_file, const struct phys_const* phys_const,
const struct unit_system* us, const struct space* s,
struct external_potential* potential) {
/* Read in the position of the centre of potential */
parser_get_param_double_array(parameter_file, "PointMassPotential:position",
3, potential->x);
/* Is the position absolute or relative to the centre of the box? */
const int useabspos =
parser_get_param_int(parameter_file, "PointMassPotential:useabspos");
if (!useabspos) {
potential->x[0] += s->dim[0] / 2.;
potential->x[1] += s->dim[1] / 2.;
potential->x[2] += s->dim[2] / 2.;
}
/* Read the other parameters of the model */
potential->mass =
parser_get_param_double(parameter_file, "PointMassPotential:mass");
potential->timestep_mult = parser_get_opt_param_float(
parameter_file, "PointMassPotential:timestep_mult", FLT_MAX);
}
/**
* @brief Prints the properties of the external potential to stdout.
*
* @param potential The external potential properties.
*/
static INLINE void potential_print_backend(
const struct external_potential* potential) {
message(
"External potential is 'Point mass' with properties (x,y,z) = (%e, %e, "
"%e), M = %e timestep multiplier = %e.",
potential->x[0], potential->x[1], potential->x[2], potential->mass,
potential->timestep_mult);
}
#endif /* SWIFT_POTENTIAL_POINT_MASS_H */