/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk) * Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_POINT_MASS_H #define SWIFT_POTENTIAL_POINT_MASS_H /* Config parameters. */ #include /* Some standard headers. */ #include #include /* Local includes. */ #include "error.h" #include "gravity.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /** * @brief External Potential Properties - Point mass case */ struct external_potential { /*! Position of the point mass */ double x[3]; /*! Mass */ double mass; /*! Time-step condition pre-factor */ float timestep_mult; }; /** * @brief Computes the time-step due to the acceleration from a point mass * * We pass in the time for simulations where the potential evolves with time. * * @param time The current time. * @param potential The properties of the externa potential. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { const float G_newton = phys_const->const_newton_G; const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz); const float rinv2 = rinv * rinv; const float rinv3 = rinv2 * rinv; const float drdv = (g->x[0] - potential->x[0]) * (g->v_full[0]) + (g->x[1] - potential->x[1]) * (g->v_full[1]) + (g->x[2] - potential->x[2]) * (g->v_full[2]); const float dota_x = G_newton * potential->mass * rinv3 * (-g->v_full[0] + 3.f * rinv2 * drdv * dx); const float dota_y = G_newton * potential->mass * rinv3 * (-g->v_full[1] + 3.f * rinv2 * drdv * dy); const float dota_z = G_newton * potential->mass * rinv3 * (-g->v_full[2] + 3.f * rinv2 * drdv * dz); const float dota_2 = dota_x * dota_x + dota_y * dota_y + dota_z * dota_z; const float a_2 = g->a_grav[0] * g->a_grav[0] + g->a_grav[1] * g->a_grav[1] + g->a_grav[2] * g->a_grav[2]; if (fabsf(dota_2) > 0.f) return potential->timestep_mult * sqrtf(a_2 / dota_2); else return FLT_MAX; } /** * @brief Computes the gravitational acceleration of a particle due to a * point mass * * Note that the accelerations are multiplied by Newton's G constant later * on. * * We pass in the time for simulations where the potential evolves with time. * * @param time The current time. * @param potential The proerties of the external potential. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, struct gpart* restrict g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz); const float rinv3 = rinv * rinv * rinv; g->a_grav[0] += -potential->mass * dx * rinv3; g->a_grav[1] += -potential->mass * dy * rinv3; g->a_grav[2] += -potential->mass * dz * rinv3; gravity_add_comoving_potential(g, -potential->mass * rinv); } /** * @brief Computes the gravitational potential energy of a particle in a point * mass potential. * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float rinv = 1.f / sqrtf(dx * dx + dy * dy + dz * dz); return -phys_const->const_newton_G * potential->mass * rinv; } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param s The #space we run in. * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { /* Read in the position of the centre of potential */ parser_get_param_double_array(parameter_file, "PointMassPotential:position", 3, potential->x); /* Is the position absolute or relative to the centre of the box? */ const int useabspos = parser_get_param_int(parameter_file, "PointMassPotential:useabspos"); if (!useabspos) { potential->x[0] += s->dim[0] / 2.; potential->x[1] += s->dim[1] / 2.; potential->x[2] += s->dim[2] / 2.; } /* Read the other parameters of the model */ potential->mass = parser_get_param_double(parameter_file, "PointMassPotential:mass"); potential->timestep_mult = parser_get_opt_param_float( parameter_file, "PointMassPotential:timestep_mult", FLT_MAX); } /** * @brief Prints the properties of the external potential to stdout. * * @param potential The external potential properties. */ static INLINE void potential_print_backend( const struct external_potential* potential) { message( "External potential is 'Point mass' with properties (x,y,z) = (%e, %e, " "%e), M = %e timestep multiplier = %e.", potential->x[0], potential->x[1], potential->x[2], potential->mass, potential->timestep_mult); } #endif /* SWIFT_POTENTIAL_POINT_MASS_H */