/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2019 Alejandro Benitez-Llambay * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_NFW_MN_H #define SWIFT_POTENTIAL_NFW_MN_H /* Config parameters. */ #include <config.h> /* Some standard headers. */ #include <float.h> #include <math.h> /* Local includes. */ #include "error.h" #include "gravity.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /** * @brief External Potential Properties - NFW Potential + Miyamoto-Nagai * * halo --> rho(r) = rho_0 / ( (r/R_s)*(1+r/R_s)^2 ) * disk --> phi(R,z) = -G * Mdisk / (R^2 + (Rdisk + (z^2+Zdisk^2)^1/2)^2)^(1/2) * * We however parameterise this in terms of c and virial_mass, Mdisk, Rdisk * and Zdisk */ struct external_potential { /*! Position of the centre of potential */ double x[3]; /*! The scale radius of the NFW potential */ double r_s; /*! The pre-factor \f$ 4 \pi G \rho_0 \r_s^3 \f$ */ double pre_factor; /*! The critical density of the universe */ double rho_c; /*! The concentration parameter */ double c_200; /*! The virial mass */ double M_200; /*! Disk Size */ double Rdisk; /*! Disk height */ double Zdisk; /*! Disk Mass */ double Mdisk; /*! Time-step condition pre_factor, this factor is used to multiply times the * orbital time, so in the case of 0.01 we take 1% of the orbital time as * the time integration steps */ double timestep_mult; /*! Minimum time step based on the orbital time at the softening times * the timestep_mult */ double mintime; /*! Common log term \f$ \ln(1+c_{200}) - \frac{c_{200}}{1 + c_{200}} \f$ */ double log_c200_term; /*! Softening length */ double eps; }; /** * @brief Computes the time-step due to the acceleration from the NFW + MN * potential as a fraction (timestep_mult) of the circular orbital time of that * particle. * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); const float mr = potential->M_200 * (logf(1.f + r / potential->r_s) - r / (r + potential->r_s)) / potential->log_c200_term; const float Vcirc_NFW = sqrtf((phys_const->const_newton_G * mr) / r); const float f1 = potential->Rdisk + sqrtf(potential->Zdisk * potential->Zdisk + dz * dz); const float Vcirc_MN = sqrtf(phys_const->const_newton_G * potential->Mdisk * R2 / pow(R2 + f1 * f1, 3.0 / 2.0)); const float Vcirc = sqrtf(Vcirc_NFW * Vcirc_NFW + Vcirc_MN * Vcirc_MN); const float period = 2 * M_PI * r / Vcirc; /* Time-step as a fraction of the circular period */ const float time_step = potential->timestep_mult * period; return max(time_step, potential->mintime); } /** * @brief Computes the gravitational acceleration from an NFW Halo potential + * MN disk. * * Note that the accelerations are multiplied by Newton's G constant * later on. * * a_x = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * x * a_y = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * y * a_z = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * z * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, struct gpart* restrict g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* First for the NFW part */ const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); const float r_inv = 1.f / r; const float term1 = potential->pre_factor; const float term2 = r / (r + potential->r_s) - logf(1.0f + r / potential->r_s); const float acc_nfw = term1 * term2 * r_inv * r_inv * r_inv; const float pot_nfw = -potential->pre_factor * logf(1.0f + r / potential->r_s) * r_inv; g->a_grav[0] += acc_nfw * dx; g->a_grav[1] += acc_nfw * dy; g->a_grav[2] += acc_nfw * dz; gravity_add_comoving_potential(g, pot_nfw); /* Now the the MN disk */ const float f1 = sqrtf(potential->Zdisk * potential->Zdisk + dz * dz); const float f2 = potential->Rdisk + f1; const float f3 = powf(R2 + f2 * f2, -1.5f); const float mn_term = potential->Rdisk + sqrtf(potential->Zdisk + dz * dz); const float pot_mn = -potential->Mdisk / sqrtf(R2 + mn_term * mn_term); g->a_grav[0] -= potential->Mdisk * f3 * dx; g->a_grav[1] -= potential->Mdisk * f3 * dy; g->a_grav[2] -= potential->Mdisk * f3 * (f2 / f1) * dz; gravity_add_comoving_potential(g, pot_mn); } /** * @brief Computes the gravitational potential energy of a particle in an * NFW potential + MN potential. * * phi = -4 * pi * G * rho_0 * r_s^3 * ln(1+r/r_s) - G * Mdisk / sqrt(R^2 + * (Rdisk + sqrt(z^2 + Zdisk^2))^2) * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* First for the NFW profile */ const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); const float term1 = -potential->pre_factor / r; const float term2 = logf(1.0f + r / potential->r_s); /* Now for the MN disk */ const float mn_term = potential->Rdisk + sqrtf(potential->Zdisk + dz * dz); const float mn_pot = -potential->Mdisk / sqrtf(R2 + mn_term * mn_term); return phys_const->const_newton_G * (term1 * term2 + mn_pot); } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { /* Read in the position of the centre of potential */ parser_get_param_double_array(parameter_file, "NFW_MNPotential:position", 3, potential->x); /* Is the position absolute or relative to the centre of the box? */ const int useabspos = parser_get_param_int(parameter_file, "NFW_MNPotential:useabspos"); if (!useabspos) { potential->x[0] += s->dim[0] / 2.; potential->x[1] += s->dim[1] / 2.; potential->x[2] += s->dim[2] / 2.; } /* Read the other parameters of the model */ potential->timestep_mult = parser_get_param_double(parameter_file, "NFW_MNPotential:timestep_mult"); potential->c_200 = parser_get_param_double(parameter_file, "NFW_MNPotential:concentration"); potential->M_200 = parser_get_param_double(parameter_file, "NFW_MNPotential:M_200"); potential->rho_c = parser_get_param_double( parameter_file, "NFW_MNPotential:critical_density"); potential->Mdisk = parser_get_param_double(parameter_file, "NFW_MNPotential:Mdisk"); potential->Rdisk = parser_get_param_double(parameter_file, "NFW_MNPotential:Rdisk"); potential->Zdisk = parser_get_param_double(parameter_file, "NFW_MNPotential:Zdisk"); potential->eps = 0.05; /* Compute R_200 */ const double R_200 = cbrtf(3.0 * potential->M_200 / (4. * M_PI * 200.0 * potential->rho_c)); /* NFW scale-radius */ potential->r_s = R_200 / potential->c_200; const double r_s3 = potential->r_s * potential->r_s * potential->r_s; /* Log(c_200) term appearing in many expressions */ potential->log_c200_term = log(1. + potential->c_200) - potential->c_200 / (1. + potential->c_200); const double rho_0 = potential->M_200 / (4.f * M_PI * r_s3 * potential->log_c200_term); /* Pre-factor for the accelerations (note G is multiplied in later on) */ potential->pre_factor = 4.0f * M_PI * rho_0 * r_s3; /* Compute the orbital time at the softening radius */ const double sqrtgm = sqrt(phys_const->const_newton_G * potential->M_200); const double epslnthing = log(1.f + potential->eps / potential->r_s) - potential->eps / (potential->eps + potential->r_s); potential->mintime = 2. * M_PI * potential->eps * sqrtf(potential->eps) * sqrtf(potential->log_c200_term / epslnthing) / sqrtgm * potential->timestep_mult; } /** * @brief Prints the properties of the external potential to stdout. * * @param potential The external potential properties. */ static INLINE void potential_print_backend( const struct external_potential* potential) { message( "External potential is 'NFW + MN disk' with properties are (x,y,z) = " "(%e, %e, %e), scale radius = %e timestep multiplier = %e, mintime = %e", potential->x[0], potential->x[1], potential->x[2], potential->r_s, potential->timestep_mult, potential->mintime); } #endif /* SWIFT_POTENTIAL_NFW_MN_H */